Skip to main content
Log in

Fokas-Lenells equation dark soliton and gauge equivalent spin equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We propose the Hirota bilinearization of the Fokas–Lenells derivative nonlinear Schrödinger equation (FLE) with a non-vanishing background. In the proposed method, we have introduced an auxiliary function to transform the equation into bilinear form. The use of an auxiliary function makes the method simpler than the ones reported earlier. Using the proposed method we have obtained the dark (and bright) one soliton solution. We have also discussed the properties of the obtained soliton and mentioned the criteria upon which the nature of the soliton being dark or bright depends upon. Then we have obtained the dark (and bright) two soliton solution and discussed the respective properties and also through asymptotic analysis showed how the phase between the two individual solitons changes before and after interaction. Eventually we have proposed the scheme for obtaining N soliton solutions. The proposed method can be extended to other nonlinear equations where straightforward bilinearization is not feasible. Later, we have introduced a gauge transformation which transforms the spectral problem of FLE into a spectral problem for the Landau–Lifshitz (LL) spin system. Soliton act as an information carrier and LL system exhibits a variety of nonlinear structures so the study is worth doing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aljohani, A., El-Zahar, E., Ebaid, A., et al.: Optical soliton perturbation with Fokas-Lenells model by Riccati equation approach. Optik 172, 741–745 (2018)

    Article  ADS  Google Scholar 

  • Arnous, A.H., Zhou, Q., Biswas, A., et al.: Optical solitons in fiber Bragg gratings with cubic-quartic dispersive reflectivity by enhanced Kudryashov’s approach. Phys. Lett. A 422, 127797 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Arshad, M., Lu, D., Rehman, M.U., et al.: Optical solitary wave and elliptic function solutions of the Fokas–Lenells equation in the presence of perturbation terms and its modulation instability. Phys. Scr. 94(10), 105202 (2019)

    Article  ADS  Google Scholar 

  • Biswas, A., Rezazadeh, H., Mirzazadeh, M., et al.: Optical soliton perturbation with fokas-lenells equation using three exotic and efficient integration schemes. Optik 165, 288–294 (2018)

    Article  ADS  Google Scholar 

  • Biswas, A., Yıldırım, Y., Yaşar, E., et al.: Optical soliton solutions to fokas-lenells equation using some different methods. Optik 173, 21–31 (2018)

    Article  ADS  Google Scholar 

  • Chakraborty, S., Nandy, S., Barthakur, A.: Bilinearization of the generalized coupled nonlinear schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions. Phys. Rev. E 91(2), 023210 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  • Cinar, M., Secer, A., Ozisik, M., et al.: Derivation of optical solitons of dimensionless fokas-lenells equation with perturbation term using sardar sub-equation method. Opt. Quant. Electron. 54(7), 402 (2022)

    Article  Google Scholar 

  • El-Shiekh, R.M., Hamdy, H.: Novel distinct types of optical solitons for the coupled fokas-lenells equations. Opt. Quant. Electron. 55(3), 251 (2023)

    Article  Google Scholar 

  • Fokas, A.: On a class of physically important integrable equations. Physica D 87(1–4), 145–150 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Gaballah, M., El-Shiekh, R.M., Hamdy, H.: Generalized periodic and soliton optical ultrashort pulses for perturbed fokas-lenells equation. Opt. Quant. Electron. 55(4), 364 (2023)

    Article  Google Scholar 

  • Ghosh, S., Nandy, S.: Inverse scattering method and vector higher order non-linear schrödinger equation. Nucl. Phys. B 561(3), 451–466 (1999)

    Article  MATH  ADS  Google Scholar 

  • Ghosh, S., Kundu, A., Nandy, S.: Soliton solutions, liouville integrability and gauge equivalence of sasa satsuma equation. J. Math. Phys. 40(4), 1993–2000 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23(3):142–144 (1973a)

  • Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. ii. normal dispersion. Appl. Phys. Lett. 23(4):171–172 (1973b)

  • Hendi, A.A., Ouahid, L., Kumar, S., et al.: Dynamical behaviors of various optical soliton solutions for the fokas-lenells equation. Mod. Phys. Lett. B 35(34), 2150529 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  • Hirota, R., Satsuma, J.: N-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Jpn. 40(2), 611–612 (1976)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Jawad, A.J.M., Biswas, A., Zhou, Q., et al.: Optical soliton perturbation of fokas-lenells equation with two integration schemes. Optik 165, 111–116 (2018)

    Article  ADS  Google Scholar 

  • Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear schrödinger equation. J. Math. Phys. 19(4), 798–801 (1978)

    Article  MATH  ADS  Google Scholar 

  • Krishnan, E., Biswas, A., Zhou, Q., et al.: Optical soliton perturbation with fokas-lenells equation by mapping methods. Optik 178, 104–110 (2019)

    Article  ADS  Google Scholar 

  • Kundu, A.: Landau-lifshitz and higher-order nonlinear systems gauge generated from nonlinear schrödinger-type equations. J. Math. Phys. 25(12), 3433–3438 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  • Lenells, J.: Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math. 123(2), 215–232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Lenells, J., Fokas, A.: On a novel integrable generalization of the nonlinear schrödinger equation. Nonlinearity 22(1), 11 (2008)

    Article  MATH  ADS  Google Scholar 

  • Mathanaranjan, T., Kumar, D., Rezazadeh, H., et al.: Optical solitons in metamaterials with third and fourth order dispersions. Opt. Quant. Electron. 54(5), 271 (2022)

    Article  Google Scholar 

  • Mathanaranjan, T., Hashemi, M.S., Rezazadeh, H., et al.: Chirped optical solitons and stability analysis of the nonlinear schrödinger equation with nonlinear chromatic dispersion. Commun. Theor. Phys. 75(8), 085005 (2023)

    Article  MATH  ADS  Google Scholar 

  • Matsuno, Y.: A direct method of solution for the fokas-lenells derivative nonlinear schrödinger equation: I. Bright soliton solutions. J. Phys. A Math. Theoret. 45(23), 235202 (2012)

    Article  MATH  ADS  Google Scholar 

  • Matsuno, Y.: A direct method of solution for the fokas-lenells derivative nonlinear schrödinger equation: II. Dark soliton solutions. J. Phys. A Math. Theoret. 45(47), 475202 (2012)

    Article  MATH  ADS  Google Scholar 

  • Onder, I., Secer, A., Ozisik, M., et al.: Obtaining optical soliton solutions of the cubic-quartic fokas-lenells equation via three different analytical methods. Opt. Quant. Electron. 54(12), 786 (2022)

    Article  Google Scholar 

  • Sasa, N., Satsuma, J.: New-type of soliton solutions for a higher-order nonlinear schrödinger equation. J. Phys. Soc. Jpn. 60(2), 409–417 (1991)

    Article  MATH  ADS  Google Scholar 

  • Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear schrödinger equation model. Phys. Rev. Lett. 85(21), 4502 (2000)

    Article  ADS  Google Scholar 

  • Takhtajan, L., Zakharov, V.: Equivalence of the nonlinear schrodinger equation and the heisenbergferromagnet equation. Theor. Math. Phys. 38, 17–23 (1979)

    Article  Google Scholar 

  • Triki, H., Wazwaz, A.M.: Combined optical solitary waves of the fokas-lenells equation. Waves Random Complex Media 27(4), 587–593 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Ullah, M.S., Seadawy, A.R., Ali, M.Z.: Optical soliton solutions to the fokas-lenells model applying the \(\varphi \) 6-model expansion approach. Opt. Quant. Electron. 55(6), 495 (2023)

    Article  Google Scholar 

  • Yildirim, Y.: Optical solitons of biswas-arshed equation by modified simple equation technique. Optik 182, 986–994 (2019)

    Article  ADS  Google Scholar 

  • Yildirim, Y.: Optical solitons to sasa-satsuma model with trial equation approach. Optik 184, 70–74 (2019)

    Article  ADS  Google Scholar 

  • Yıldırım, Y., Yaşar, E.: A (2+ 1)-dimensional breaking soliton equation: solutions and conservation laws. Chaos, Solitons Fractals 107, 146–155 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Yıldırım, Y., Biswas, A., Asma, M., et al.: Optical soliton perturbation with chen-lee-liu equation. Optik 220, 165177 (2020)

    Article  ADS  Google Scholar 

  • Yıldırım, Y., Topkara, E., Biswas, A., et al.: Cubic-quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine-gordon equation approach. J. Opt. 50, 322–329 (2021)

    Article  Google Scholar 

  • Zhao, Y., Fan, E.: Inverse scattering transformation for the fokas-lenells equation with nonzero boundary conditions. J. Nonlinear Math. Phys. 28(1), 38–52 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, Y.H., Mathanaranjan, T., Rezazadeh, H., et al.: New solitary wave solutions and stability analysis for the generalized (3+ 1)-dimensional nonlinear wave equation in liquid with gas bubbles. Results Phys. 43, 106083 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

R. Dutta and S. Talukdar acknowledge Department of Science & Technology, Govt. of India for INSPIRE fellowship award. Corresponding award numbers DST/INSPIRE Fellowship/2020/IF200303 and DST/INSPIRE Fellowship/2020/IF200278.

Funding

R. Dutta and S. Talukdar receive fellowship from Department of Science & Technology, Govt. of India under INSPIRE programme. Corresponding fellowship award numbers DST/INSPIRE Fellowship/2020/IF200303 and DST/INSPIRE Fellowship/2020/IF200278. Other than this the authors did not receive any fund support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: All the authors; formal analysis: RD; supervision: SN; validation: SN, ST, GKS; writing - original draft: RD; writing - review & editing: all the authors.

Corresponding author

Correspondence to Sudipta Nandy.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, R., Talukdar, S., Saharia, G.K. et al. Fokas-Lenells equation dark soliton and gauge equivalent spin equation. Opt Quant Electron 55, 1183 (2023). https://doi.org/10.1007/s11082-023-05460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05460-x

Keywords

Navigation