Skip to main content
Log in

Simulation of triple-bands LSPR based on exposed-core MOF with multilayered nanoshell: application in multiplex RI sensing

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A localized surface plasmon resonance (LSPR) refractive index (RI) sensor based on exposed-core micro-structured optical fiber (EC-MOF) with a multilayered nanoshell (MNS) is designed. The triple-bands LSPR provided by the MNS, which consists of a gold core and a silver shell that separated by a dielectric layer, can realize the detection of three different targets simultaneously for the first time to our best knowledge. The novel characteristics of intense and distinct resonance peak at shorter wavelength is different from the higher order SPR modes, and the physical mechanism of MNS is illustrated by plasmon hybridization theory. The RI sensing ability is investigated at 1.33–1.42 in both wavelength and amplitude interrogations with sensitivities of 2082 nm/RIU and 202 RIU−1. Peak 1 exhibits ultrasharp LSPR with full width half maximum (FWHM) only 6 nm, leading to figure of merit (FOM) of 347 RIU−1, about 6–356 times higher than other similar works. The influences of MNS structure, number, position and length in EC-MOF are all analyzed in detail. Results indicate that the sensing characteristics can be optimized by adjusting the geometrical dimensions of MNS and the sensor exhibits relative strong tolerance, which show great potential for multiplex biosensing used in harsh environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  • Bykov, D.S., Schmidt, O.A., Euser, T.G., Russell, PSt.J.: Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photon. 9, 461–466 (2015)

    ADS  Google Scholar 

  • Choi, C.K.K., Zhuo, X.L., Chiu, Y.T.E., et al.: Polydopamine-based concentric nanoshells with programmable architectures and plasmonic properties. Nanoscale 9, 16968–16980 (2017)

    Google Scholar 

  • Csaki, A., Jahn, F., Latka, I., et al.: Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers. Small 6(22), 2584–2589 (2010)

    Google Scholar 

  • Daimon, M., Masumura, A.: Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 46(18), 3811–3820 (2007)

    ADS  Google Scholar 

  • Erwin, W.R., Bardhan, R.: Directional scattering and sensing with bimetallic fanocubes: A complex fano-resonant plasmonic nanostructure. J. Phys. Chem. C 120(51), 29423–29431 (2016)

    Google Scholar 

  • Gao, Z.G., Feng, Y.H., Chen, H.L., et al.: Refractive index and temperature sensing system with high sensitivity and large measurement range using an optical fiber. IEEE T. Instrum. Meas. 72, 9502706 (2023)

    Google Scholar 

  • Gulati, A., Liao, H., Hafner, J.H.: Monitoring gold nanorod synthesis by localized surface plasmon resonance. J. Phys. Chem. B 110(45), 22323–22327 (2006)

    Google Scholar 

  • Hao, Z.J., Pu, S.L., Lahoubi, M., et al.: Dual-channel-in-one temperature-compensated all-fiber-optic vector magnetic field sensor based on surface plasmon resonance. Opt. Express 31(3), 4826–4838 (2023)

    ADS  Google Scholar 

  • Hou, D.L., Ji, X.X., Luan, N.N., et al.: Surface plasmon resonance sensor based on double-sided polished microstructured optical fiber with hollow core. IEEE Photonics J. 13(4), 6800408 (2021)

    Google Scholar 

  • Hsu, S.W., Rodarte, A.L., Som, M., Arya, G., Tao, A.R.: Colloidal plasmonic nanocomposites: From fabrication to optical function. Chem. Rev. 118(6), 3100–3120 (2018)

    Google Scholar 

  • Hu, Y., Fleming, R.C., Drezek, R.A.: Optical properties of gold-silica-gold multilayer nanoshells. Opt. Express 16(24), 19579–19591 (2008)

    ADS  Google Scholar 

  • Hussain, N., Masuk, M.R., Hossain, M.F., et al.: Dual core photonic crystal fiber based plasmonic refractive index sensor with ultra-wide detection range. Opt. Express 31(16), 26910–26922 (2023)

    ADS  Google Scholar 

  • Islam, A., Haider, F., Aoni, R.A., Ahmed, R.: Plasmonic photonic biosensor: In situ detection and quantification of SARS-CoV-2 particles. Opt. Express 30(22), 40277–40291 (2022)

    ADS  Google Scholar 

  • Kumar, S., Yadav, A., Malomed, B.A.: High performance surface plasmon resonance based sensor using black phosphorus and magnesium oxide adhesion layer. Front. Mater. 10, 1–12 (2023)

    Google Scholar 

  • Li, X.G., Nguyen, L.V., et al.: Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber. IEEE J. Sel. Top. Quant. 26(4), 5600107 (2020)

    Google Scholar 

  • Liu, L., Liu, Z.H., Zhang, Y., Liu, S.T.: Side-polished D-type fiber SPR sensor for RI sensing with temperature compensation. IEEE Sens. J. 21(15), 16621–16628 (2021)

    ADS  Google Scholar 

  • Lu, Y., Hao, C.J., Wu, B.Q., et al.: Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments. Sensors 12(9), 12016–12025 (2012)

    ADS  Google Scholar 

  • Lu, M.D., Zhu, H., Lin, M., et al.: Comparative study of block copolymer-templated localized surface plasmon resonance optical fiber biosensors: CTAB or citrate-stabilized gold nanorods. Sensor. Actuat. B-Chem. 329, 129094 (2021)

    Google Scholar 

  • Luan, N.N., Yao, J.Q.: Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire. IEEE Photon. J. 8(1), 4800508 (2016)

    Google Scholar 

  • Luo, J.X., Liu, S., Zhao, Y.Y., et al.: Phase-shifted fiber Bragg grating modulated by a hollow cavity for measuring gas pressure. Opt. Lett. 45(2), 507–510 (2020)

    ADS  Google Scholar 

  • Mai, Z.G., Zhang, J.H., Chen, Y.Z., et al.: A disposable fiber optic SPR probe for immunoassay. Biosens. Bioelectron. 144, 111621 (2019)

    Google Scholar 

  • Martelli, C., Olivero, P., Canning, J., Groothoff, N., Gibson, B., Huntington, S.: Micromachining structured optical fibers using focused ion beam milling. Opt. Lett. 32(11), 1575–1577 (2007)

    ADS  Google Scholar 

  • Millstone, J.E., Hurst, S.J., et al.: Colloidal gold and silver triangular nanoprisms. Small 5(6), 646–664 (2010)

    Google Scholar 

  • Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.: A hybridization model for the plasmon response of complex nanostructures. Science 32(17), 419–422 (2003)

    ADS  Google Scholar 

  • Rifat, A.A., Ahmed, R., Yetisen, A.K., et al.: Photonic crystal fiber based plasmonic sensors. Sensor. Actuat. B-Chem. 243, 311–325 (2017)

    Google Scholar 

  • Sun, Y.G., Xia, Y.N.: Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem. 74(20), 5297–5305 (2002)

    Google Scholar 

  • Tam, F., Moran, C., Halas, N.: Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J. Phys. Chem. B 108(45), 17290–17294 (2004)

    Google Scholar 

  • Ugwuoke, L.C., Krüger, T.P.J.: Theoretical studies and simulation of gold−silica−gold multilayer “fanoshells” for sensing applications. ACS Appl. Nano. Mater. 5(5), 6249–6259 (2022)

    Google Scholar 

  • Xu, T.P., Geng, Z.X.: Strategies to improve performances of LSPR biosensing: Structure, materials, and interface modification. Biosens. Bioelectron. 174, 112850 (2021)

    Google Scholar 

  • Yadav, A., Sudhanva, S., Sharan, P., Kumar, A.: Modeling, simulation and computational analysis of plasmonic optical sensor using BaTiO3 in diabetes mellitus. Int. J. Inf. Tecnol. 13(6), 2163–2168 (2021)

    Google Scholar 

  • Yadav, A., Kumar, A., Sharan, P.: Sensitivity enhancement of a plasmonic biosensor for urine glucose detection by employing black phosphorous. J. Opt. Soc. Am. B 39(1), 200–206 (2022)

    ADS  Google Scholar 

  • Yadav, A., Kumar, S., Kumar, A., Sharan, P.: Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection. Front. Mater. 9, 1–12 (2023)

    Google Scholar 

  • Yadav, A., Kumar, A., Sharan, P., Mishra, M.: Highly sensitive bimetallic-metal nitride SPR biosensor for urine glucose detection. IEEE T. Nanobiosci. (2023). https://doi.org/10.1109/TNB.2023.3246535,Feb

    Article  Google Scholar 

  • Yang, X.C., Lu, Y., Liu, B.L., Yao, J.Q.: Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires. IEEE Photon. J. 8(3), 6803309 (2016)

    Google Scholar 

  • Yang, X.C., Lu, Y., Liu, B.L., Yao, J.Q.: Simulation of LSPR sensor based on exposed-core grapefruit fiber with a silver nanoshell. J. Lightwave Technol. 35(21), 4728–4733 (2017)

    ADS  Google Scholar 

  • Yang, X.C., Lu, Y., Liu, B.L., et al.: High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling. IEEE Photonics J. 10(2), 6801909 (2018)

    Google Scholar 

  • Yang, X.C., Zhu, L.Q., Lu, Y., Yao, J.Q.: Ultrasharp LSPR temperature sensor based on grapefruit fiber filled with a silver nanoshell and liquid. J. Lightwave Technol. 38(7), 2015–2021 (2020)

    ADS  Google Scholar 

  • Zhang, W.D., Luan, N.N.: Cross-sensitivity immune SPR sensor based on fan-shaped microstructured optical fiber for temperature and refractive index sensing. Opt. Express 31(17), 27161–27170 (2023)

    ADS  Google Scholar 

  • Zhang, Q., Liu, H.L., Li, B., et al.: A dual-channel surface plasmon resonance sensor for the liquid refractive index and temperature measurement based on hollow-core fiber. IEEE Sens. J. 22(8), 7785–7791 (2022)

    ADS  Google Scholar 

  • Zhang, S.Q., Han, B., Zhang, Y.N., et al.: Multichannel fiber optic SPR sensors: Realization methods, application status, and future prospects. Laser Photonics Rev. 16(8), 2200009 (2022)

    ADS  Google Scholar 

  • Zhang, Q., Liu, H.L., Fu, R., et al.: High sensitivity surface plasmon resonance magnetic field sensor based on Au/gold nanoparticles/magnetic fluid in the hollow core fiber. IEEE Sens. J. 23(12), 12899–12905 (2023)

    ADS  Google Scholar 

  • Zhang, Q., Liu, H.L., Hu, T.T., et al.: Highly sensitive surface plasmon resonance temperature sensor based on a hollow core fiber multilayer structure. Opt. Express 31(15), 23840–23850 (2023)

    ADS  Google Scholar 

  • Zhu, J., Zhao, S.M.: The effect of gain-assisted silica separate layer on the plasmonic local field enhancement of Ag-Si-Ag coaxial-cable type silver nanotube. Optik 241, 167002 (2021)

    ADS  Google Scholar 

  • Zhu, J., Li, J.J., Zhao, J.W.: Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6(3), 527–534 (2011)

    Google Scholar 

  • Zhu, J., Li, J.J., Yuan, L., Zhao, J.W.: Optimization of three-layered Au−Ag bimetallic nanoshells for triple-bands surface plasmon resonance. J. Phys. Chem. C 116(21), 11734–11740 (2012)

    Google Scholar 

  • Zhu, J., Xu, Z.J., Weng, G.J., et al.: Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 200, 43–50 (2018)

    ADS  Google Scholar 

Download references

Funding

The National Nature Science Foundation of China (Grant No. 62305301, 62174148, 61874099), National Key Research and Development Program (NKRDP Grant No. 2022YFE0112000, 2016YFE0118400), Zhengzhou 1125 Innovation Project (Grant No. ZZ2018-45), Ningbo 2025 Key Innovation Project (Grant No. 2019B10129), National Natural ScieÞnce Foundation of China Henan Provincial Joint Fund Key Project (U1604263), Science and Technology Research Program of Henan Province (192102310055, 202102310209, 232102221002), Henan Postdoctoral Foundation (20202025).

Author information

Authors and Affiliations

Authors

Contributions

GY for the manuscript accomplish, CH and MC for the simulation data, XY, YL, XS and JY for the academic guidance.

Corresponding author

Correspondence to Xianchao Yang.

Ethics declarations

Conflict of interest

The authors have no competing interest to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Hu, C., Chen, M. et al. Simulation of triple-bands LSPR based on exposed-core MOF with multilayered nanoshell: application in multiplex RI sensing. Opt Quant Electron 55, 1225 (2023). https://doi.org/10.1007/s11082-023-05454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05454-9

Keywords

Navigation