Skip to main content
Log in

Construction of Hamiltonina and optical solitons along with bifurcation analysis for the perturbed Chen–Lee–Liu equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper seeks to introduce the wave structures and dynamics properties of the perturbed Chen–Lee–Liu equation (PCLLE). Using the traveling wave transformation, we derive the corresponding traveling wave system from the original equation and construct a conserved quantity named as Hamiltonian. Subsequently, we establish periodic solutions and the existence of soliton using the bifurcation method. The bifurcation method is a mathematical technique used to study how the qualitative behavior of a system changes as one or more parameters of the system are varied. It involves analyzing the system’s equilibrium points and studying how they behave as the parameters are changed. Finally, we construct the exact traveling wave solutions using the complete discriminant system (CDS) of polynomial method (CDSPM) to explicitly validate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

Data availibility

All data generated or analysed during this study are included in this article.

References

  • Akram, G., Sadaf, M., Zainab, I.: Observations of fractional effects of \(\beta \)-derivative and M-truncated derivative for space time fractional \(\phi -4\) equation via two analytical techniques. Chaos Solitons Fractals 154, 111645 (2022)

    MathSciNet  MATH  Google Scholar 

  • Ali, I., Rizvi, S.T.R., Abbas, S.O., Zhou, Q.: Optical solitons for modulated compressional dispersive Alfven and Heisenberg ferromagnetic spin chains. Results Phys. 15, 102714 (2019)

    Google Scholar 

  • Aly, R.: Seadawy, Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67, 172–180 (2014)

    MathSciNet  Google Scholar 

  • Aly, R.: Seadawy, stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma. Phys. A Stat. Mech. Appl. 455, 44–51 (2016)

    MATH  Google Scholar 

  • Seadawy, A.R., Kumar, D., Chakrabarty, A.K.: Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrodinger equations via the extended sinh-Gordon equation expansion method. Eur. Phys. J. Plus 133(182), 1–12 (2018)

    Google Scholar 

  • Seadawy, A.R., Rizvi, S.T., Ahmad, S., Younis, M., Baleanu, D.: Lump, lump-one stripe, multiwave and breather solutions for the Hunter-Saxton equation. Open. Physics 19, 1–10 (2021)

    Google Scholar 

  • Arnous, A.H.: Nematicons in liquid crystals by modified simple equation method. Nonlinear Dyn. 88, 2863–2872 (2017)

    MathSciNet  Google Scholar 

  • Arshad, M., Seadawy, A., Lu, D., Wang, J.: Travelling wave solutions of generalized coupled Zakharov-Kuznetsov and dispersive long wave equations. Results Phys. 6, 1136–1145 (2016)

    ADS  Google Scholar 

  • Arshed, S., Raza, N., Alansari, M.: Soliton solutions of the generalized Davey-Stewartson equation with full nonlinearities via three integrating schemes. Ain Shams Eng. J. 12(3), 3091–3098 (2021)

    Google Scholar 

  • Asjad, M.I., Faridi, W.A., Alhazmi, S.E., Hussanan, A.: The modulation instability analysis and generalized fractional propagating patterns of the Peyrard-Bishop DNA dynamical equation. Opt. Quant. Electron. 55(3), 1–34 (2023)

    Google Scholar 

  • Aziz, N., Seadawy, A.R., Ali, K., Sohail, M., Rizvi, S.T.R.: The nonlinear Schrödinger equation with polynomial law nonlinearity: localized chirped optical and solitary wave solutions. Opt. Quant. Electron. 54, 458 (2022)

    Google Scholar 

  • Baskonus, H.M.: On pulse propagation of soliton wave solutions related to the perturbed Chen-Lee-Liu equation in an optical fiber. Opt. Quant. Electron. 53, 556 (2021)

    Google Scholar 

  • Batool, T., Seadawy, A.R., Rizvi, S.T.R., Ali, K.: Homoclinic breather, M-shaped rational, multiwaves and their interactional solutions for fractional quadratic-cubic nonlinear Schrödinger equation. Opt. Quant. Electron. 54, 844 (2022)

    Google Scholar 

  • Biswas, A.: Chirped optical solitons of Chen-Lee-Liu equation by extended trial equation scheme. Optik 156, 999–1006 (2018)

    ADS  Google Scholar 

  • Biswas, A.: Chirp-free bright optical soliton perturbation with Chen-Lee-Liu equation by traveling wave hypothesis and semi-inverse variational principle. Optik 172, 772–776 (2018)

    ADS  Google Scholar 

  • Cao, D.: The classification of the single traveling wave solutions to the time-fraction Gardner equation. Chin. J. Phys. 59, 379–92 (2019)

    MathSciNet  Google Scholar 

  • Chen, S., Liu, Y., Wei, L., Guan, B.: Exact solutions to fractional Drinfel’d-Sokolov-Wilson equations. Chin. J. Phys. 56(2), 708–20 (2018)

    MathSciNet  Google Scholar 

  • Filiz, A., Ekici, M., Sonmezoglu, A.: F-Expansion method and new exact solutions of the Schrödinger-KdV Equation. Sci. World J. (2014). https://doi.org/10.1155/2014/534063

    Article  Google Scholar 

  • Guzman, J.V.: Solitons in nonlinear directional couplers with optical metamaterials. Nonlinear Dyn. 87(1), 427 (2017)

    MATH  Google Scholar 

  • He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700–708 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Hirota, R.: The Direct Method in Soliton Theory, p. 155. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Kai, Y.: The classification of the single travelling wave solutions to the variant Boussinesq equations. Pramana J. Phys. 87(4), 59 (2016)

    ADS  Google Scholar 

  • Kai, Y., Chen, S., Zheng, B., Zhang, K., Yang, N., Xu, W.: Qualitative and quantitative analysis of nonlinear dynamics by the complete discrimination system for polynomial method. Chaos Solitons Fractals 141, 110314 (2020)

    MathSciNet  MATH  Google Scholar 

  • Kudryashov, N.A.: Optical solitons of the Chen-Lee-Liu equation with arbitrary refractive index. Optik 247, 167935 (2021)

    ADS  Google Scholar 

  • Kumar, S., Niwas, M.: New optical soliton solutions and a variety of dynamical wave profiles to the perturbed Chen-Lee-Liu equation in optical fibers. Opt. Quant. Electron. 55, 418 (2023)

    Google Scholar 

  • Kumar, S., Niwas, M., Wazwaz, A.M.: Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2 + 1)-dimensional NNV equations. Phys. Scr. 95(9), 095204 (2020)

    ADS  Google Scholar 

  • Majid, S.Z., Faridi, W.A., Asjad, M.I., El-Rahman, A., Eldin, S.M.: Explicit soliton structure formation for the riemann wave equation and a sensitive demonstration. Fractal Fract. 7(2), 102 (2023)

    Google Scholar 

  • Mathanaranjan, T.: New optical solitons and modulation instability analysis of generalized coupled nonlinear Schrödinger-KdV system. Opt. Quant. Electron. 54, 336 (2022)

    Google Scholar 

  • Mathanaranjan, T.: Optical solitons and stability analysis for the new (3+1)-dimensional nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater 32(02), 2350016 (2023)

    ADS  Google Scholar 

  • Raza, N., Hassan, Z., Gómez-Aguilar, J.F.: Extraction of new super-Gaussian solitons via collective variables. Opt. Quant. Electron. 53(8), 1–15 (2021)

    Google Scholar 

  • Rezazadeh, H.: New exact traveling wave solutions to the (2+1)-dimensional chiral nonlinear Schrödinger equation. Math. Model. Nat. Phenom 16, 38 (2021)

    MATH  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Hanif, M., Younis, M., Ali, K., Althobaiti, A.: Investigation of chirp-free dromions to higher order nonlinear Schrödinger equation with non Kerr terms. Int. J. Mod. Phys. B 36(5), 2250043 (2022)

    ADS  Google Scholar 

  • Rizvi, S.T.R., Abbas, S.O., Ali, K.: Optical solitons for non-Kerr law nonlinear Schrödinger equation with third and fourth order dispersions. Chin. J. Phys. 60, 133–140 (2019)

    Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Mustafa, B., Ali, K., Ashraf, R.: Propagation of chirped periodic and solitary waves for the coupled nonlinear Schrödinger equation in two core optical fibers with parabolic law with weak non local nonlinearity. Opt. Quant. Electron. 54, 545 (2022)

    Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Farah, N., Ahmad, S.: Application of Hirota operators for controlling soliton interactions for Bose-Einstien condensate and quintic derivative nonlinear Schrödinger equation. Chaos, Solitons Fractals 159, 112128 (2022)

    MATH  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Raza, U.: Some advanced chirped pulses for generalized mixed for nonlinear Schrödinger dynamical equation. Chaos Solitons Fractals 163, 112575 (2022)

    MATH  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Akram, U.: New dispersive optical soliton for an nonlinear Schrödinger equation with Kudryashove law of refractive index along with P-test. Opt. Quant. Electron. 54, 310 (2022)

    Google Scholar 

  • Seadawy, A.R., Rizvi, S.T.R., Akram, U., Naqvi, S.K.: Optical and analytical solitons to higher order non-Kerr nonlinear Schrödinger dynamical model. J. Geom. Phys. 179, 104616 (2022)

    MATH  Google Scholar 

  • Seadawy, A.R., Rizvi, S.T.R., Ahmed, S.: Weierstrass and Jacobi elliptic, bell and kink type, lumps, Ma and Kuznetsov breathers with rogue wave solutions to the dissipative nonlinear Schrödinger equation. Chaos, Solitons Fractals 150, 112258 (2022)

    MATH  Google Scholar 

  • Seadawy, A.R., Rizvi, S.T.R., Ahmad, S.: Weierstrass and Jacobi elliptic, bell and kink type, lumps: Ma and Kuznetsov breathers with rogue wave solutions to the dissipative nonlinear Schrödinger equation. Chaos Solitons Fractals 160, 112258 (2022)

    MATH  Google Scholar 

  • Shi, L.C.: All single traveling wave solutions to (3+1)-dimensional Nizh-nok-Novikov-Veselov equation. Commun. Theor. Phys. 45, 991–2 (2006)

    ADS  MathSciNet  Google Scholar 

  • Shi, L.C.: Classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation. Commun. Theor. Phys. 48(4), 601 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • Shi, L.C.: The classification of travelling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion. Chin. Phys. 16(7), 1832 (2007)

    Google Scholar 

  • Shi, L.C.: Representations and classification of traveling wave solutions to Sinh-Gördon equation. Commun. Theor. Phys. 49(1), 153 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  • Shi, L.C.: Solution of ODE \(u^{^{\prime \prime }}+ p(u)(u^{\prime })^2 + q(u) = 0\) and applications to classifications of all single travelling wave solutions to some nonlinear mathematical physics equations. Commun. Theor. Phys. 49(2), 291 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  • Shi, L.C.: Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations. Comput. Phys. Commun. 181(2), 317–24 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  • Rizvi, S.T., Seadawy, A.R., Ahmed, S., Younis, M., Ali, K.: Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation. Chaos Solitons Fractals 151, 111251 (2021)

    MATH  Google Scholar 

  • Usman, Y., Younis, M., Seadawy Aly, R., Rizvi, S.T.: Optical solitons and closed form solutions to (3+1)-dimensional resonant Schrodinger equation. Int. J. Mod. Phys. B. 34(30), 2050291 (2020)

    MATH  Google Scholar 

  • Wazwaz, A.M.: The extended tanh method for the Zakharov-Kuznestsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. 9, 1039–1047 (2018)

    MATH  Google Scholar 

  • Yildirim, Y.: Optical soliton perturbation with Chen-Lee-Liu equation. Optik 220, 165177 (2020)

    ADS  Google Scholar 

  • Zhao, Y.M.: F-expansion method and its application for finding new exact solutions to the Kudryashov-Sinelshchikov equation. J. Appl. Math. 2013, 895760 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23062).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aly R. Seadawy.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

I hereby declare that this manuscript is the result of my independent creation under the reviewers’ comments. Except for the quoted contents, this manuscript does not contain any research achievements that have been published or written by other individuals or groups.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedjani, A.H., Seadawy, A.R., Rizvi, S.T.R. et al. Construction of Hamiltonina and optical solitons along with bifurcation analysis for the perturbed Chen–Lee–Liu equation. Opt Quant Electron 55, 1151 (2023). https://doi.org/10.1007/s11082-023-05403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05403-6

Keywords

Navigation