Skip to main content
Log in

Distributed computing model for channel bandwidth allocation and optimization using machine learning techniques

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A distributed computing model for channel bandwidth allocation and optimization can involve multiple components working together to efficiently allocate and optimize the available bandwidth in a distributed system. The efficient allocation of channel bandwidth in the distributed computing model is crucial for optimizing resource utilization and improving system performance. This paper, proposed the Imperialist Competitive Spline Interpolation (ICSI) scheme, which combines computational intelligence and deep learning techniques to address the challenge of channel bandwidth allocation. The ICSI scheme optimizes resource allocation by considering user requirements and resource availability, utilizing polynomial equations and spline interpolation. The Imperialist Competitive Optimization model evaluates and optimizes the available resources in the distributed environment. With the optimized resources spline interpolation is implemented for the computation of the available resources. Extensive simulations and performance analysis demonstrate the effectiveness of the ICSI scheme in terms of resource utilization, throughput, latency, fairness index, and energy efficiency. The ICSI model achieves the minimal waiting time of 3 ms and minimal latency of 6.4 m. Comparative analysis of the Round Robin scheme further confirms the superiority of the ICSI scheme in terms of task scheduling efficiency. The findings of this paper contribute to the advancement of distributed computing models for channel bandwidth allocation, offering a promising solution for optimizing resource allocation and improving system performance in modern computing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All the data’s available in the manuscript.

References

  • Cao, B., Sun, Z., Zhang, J., Gu, Y.: Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing. IEEE Trans. Intell. Transp. Syst. 22(6), 3832–3840 (2021)

    Article  Google Scholar 

  • Chen, C., Zhang, Y., Wang, Z., Wan, S., Pei, Q.: Distributed computation offloading method based on deep reinforcement learning in ICV. Appl. Soft Comput. 103, 107108 (2021)

    Article  Google Scholar 

  • Deshmukh, S., Thirupathi Rao, K., Shabaz, M.: Collaborative learning based straggler prevention in large-scale distributed computing framework. Secur. Commun. Netw. 2021, 1–9 (2021)

    Article  Google Scholar 

  • Fu, Y., Li, D., Tang, Q., & Zhou, S.: Joint speed and bandwidth optimized strategy of UAV-assisted data collection in post-disaster areas. In 2022 20th Mediterranean Communication and Computer Networking Conference (MedComNet) (pp. 39–42). IEEE. (2022)

  • Guo, Y., Zhao, Z., He, K., Lai, S., Xia, J., Fan, L.: Efficient and flexible management for industrial internet of things: a federated learning approach. Comput. Netw. 192, 108122 (2021)

    Article  Google Scholar 

  • Guo, Y., Zhao, R., Lai, S., Fan, L., Lei, X., Karagiannidis, G.K.: Distributed machine learning for multiuser mobile edge computing systems. IEEE J. Sel. Top. Signal Process. 16(3), 460–473 (2022)

    Article  ADS  Google Scholar 

  • Huang, T.W., Lin, D.L., Lin, C.X., Lin, Y.: Taskflow: a lightweight parallel and heterogeneous task graph computing system. IEEE Trans. Parallel Distrib. Syst. 33(6), 1303–1320 (2021)

    Article  Google Scholar 

  • Jhaveri, R.H., Ramani, S.V., Srivastava, G., Gadekallu, T.R., Aggarwal, V.: Fault-resilience for bandwidth management in industrial software-defined networks. IEEE Trans. Netw. Sci. Eng. 8(4), 3129–3139 (2021)

    Article  Google Scholar 

  • Ju, S., Xing, Y., Kanhere, O., Rappaport, T.S.: Millimeter wave and sub-terahertz spatial statistical channel model for an indoor office building. IEEE J. Sel. Areas Commun. 39(6), 1561–1575 (2021)

    Article  Google Scholar 

  • Kamal, M., Bostani, A., Webber, J.L., Mehbodniya, A., Mishra, R., Arumugam, M.: Total harmonic distortion reduction based energy harvesting using grid-based three phase system and integral-derivative. Comput. Electr. Eng. 109, 108744 (2023)

    Article  Google Scholar 

  • Li, W., Wu, J., Cao, J., Chen, N., Zhang, Q., Buyya, R.: Blockchain-based trust management in cloud computing systems: a taxonomy, review and future directions. J. Cloud Comput. 10(1), 1–34 (2021)

    Article  Google Scholar 

  • Lim, W.Y.B., Ng, J.S., Xiong, Z., Jin, J., Zhang, Y., Niyato, D., Miao, C.: Decentralized edge intelligence: a dynamic resource allocation framework for hierarchical federated learning. IEEE Trans. Parallel Distrib. Syst. 33(3), 536–550 (2021)

    Article  Google Scholar 

  • Liu, S., Yu, J., Deng, X., Wan, S.: FedCPF: an efficient-communication federated learning approach for vehicular edge computing in 6G communication networks. IEEE Trans. Intell. Transp. Syst. 23(2), 1616–1629 (2021)

    Article  Google Scholar 

  • Mansouri, Y., Babar, M.A.: A review of edge computing: features and resource virtualization. J. Parallel Distrib. Comput. 150, 155–183 (2021)

    Article  Google Scholar 

  • Nguyen, G.N., Le Viet, N.H., Elhoseny, M., Shankar, K., Gupta, B.B., Abd El-Latif, A.A.: Secure blockchain enabled cyber–physical systems in healthcare using deep belief network with ResNet model. J. Parallel Distrib. Comput. 153, 150–160 (2021)

    Article  Google Scholar 

  • Qu, G., Wu, H., Li, R., Jiao, P.: DMRO: a deep meta reinforcement learning-based task offloading framework for edge-cloud computing. IEEE Trans. Netw. Serv. Manag. 18(3), 3448–3459 (2021)

    Article  Google Scholar 

  • Rajesh, M., Gnanasekar, J.M.: Path observation based physical routing protocol for wireless ad hoc networks. Wirel. Pers Commun. 97, 1267–1289 (2017). https://doi.org/10.1007/s11277-017-4565-9

    Article  Google Scholar 

  • Sadeeq, M.A., Zeebaree, S.: Energy management for internet of things via distributed systems. J. Appl. Sci. Technol. Trends 2(02), 59–71 (2021)

    Article  Google Scholar 

  • Singh, J., Singh, P., Gill, S.S.: Fog computing: a taxonomy, systematic review, current trends and research challenges. J. Parallel Distrib. Comput. 157, 56–85 (2021)

    Article  Google Scholar 

  • Suma, D.V.: Wearable IoT based distributed framework for ubiquitous computing. J. Ubiquitous Comput. Commun. Technol. 3(1), 23–32 (2021)

    MathSciNet  Google Scholar 

  • Tamilarasi, K., Shinzeer, C.K., Anupong Wongchai, R., Azhagumurugan, M.Y., Singh, B., Arumugam, M.: OFDM and MIMO wireless communication performance measurement using enhanced selective mapping based partial transmit sequences. Optik 272, 170293 (2023)

    Article  ADS  Google Scholar 

  • Tang, S., Chen, L., He, K., Xia, J., Fan, L., Nallanathan, A.: Computational intelligence and deep learning for next-generation edge-enabled industrial IoT. IEEE Trans. Netw. Sci. Eng. (2022). https://doi.org/10.1109/TNSE.2022.3180632

    Article  Google Scholar 

  • Tissir, N., El Kafhali, S., Aboutabit, N.: Cybersecurity management in cloud computing: semantic literature review and conceptual framework proposal. J. Reliab. Intell. Environ. 7, 69–84 (2021)

    Article  Google Scholar 

  • Wang, X., Kang, Y., Hyndman, R.J., Li, F.: Distributed ARIMA models for ultra-long time series. Int. J. Forecast. 39(3), 1163–1184 (2023)

    Article  Google Scholar 

  • Wu, Y., Xia, J., Gao, C., Ou, J., Fan, C., Ou, J., Fan, D.: Task offloading for vehicular edge computing with imperfect CSI: a deep reinforcement approach. Phys. Commun. 55, 101867 (2022)

    Article  Google Scholar 

  • Xie, X., Sun, Y.: A piecewise probabilistic harmonic power flow approach in unbalanced residential distribution systems. Int. J. Electr. Power Energy Syst. 141, 108114 (2022)

    Article  Google Scholar 

  • Xu, G., Bai, H., Xing, J., Luo, T., Xiong, N.N., Cheng, X., Zheng, X.: SG-PBFT: a secure and highly efficient distributed blockchain PBFT consensus algorithm for intelligent Internet of vehicles. J. Parallel Distrib. Comput. 164, 1–11 (2022)

    Article  Google Scholar 

  • Yu, R., Li, P.: Toward resource-efficient federated learning in mobile edge computing. IEEE Netw. 35(1), 148–155 (2021)

    Article  MathSciNet  Google Scholar 

  • Yuvaraj, N., Karthikeyan, T., Praghash, K.: An improved task allocation scheme in serverless computing using gray wolf Optimization (GWO) based reinforcement learning (RIL) approach. Wirel. Pers. Commun. 117(3), 2403–2421 (2021)

    Article  Google Scholar 

  • Zhou, B., Zou, J., Chung, C.Y., Wang, H., Liu, N., Voropai, N., Xu, D.: Multi-microgrid energy management systems: architecture, communication, and scheduling strategies. J. Modern Power Syst. Clean Energy 9(3), 463–476 (2021)

    Article  Google Scholar 

  • Zhu, S., Gui, L., Zhao, D., Cheng, N., Zhang, Q., Lang, X.: Learning-based computation offloading approaches in UAVs-assisted edge computing. IEEE Trans. Veh. Technol. 70(1), 928–944 (2021)

    Article  Google Scholar 

Download references

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Contributions

PS: Conceptualization, Methodology, Software, Data curation, Writing- Original, draft preparation, Visualization, Investigation, Supervision, Software, ZZ: Validation, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Zheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, P., Zhang, Z. Distributed computing model for channel bandwidth allocation and optimization using machine learning techniques. Opt Quant Electron 55, 1159 (2023). https://doi.org/10.1007/s11082-023-05382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05382-8

Keywords

Navigation