Skip to main content
Log in

Optical viscous quantum ferromagnetic model for thermal radiation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, optical recursional viscous ferromagnetic microfluidics normalized \(\Delta (\tau ),\Delta (\nu ),\Delta (\beta )\) bilayered viscous ferromagnetic microbeam solidity are described in de Sitter space. Thus, we obtain hydromagnetic recursional viscous ferromagnetic microfluidics normalized thermal \(\Delta (\tau ),\Delta (\nu ),\Delta (\beta )\) radiation. Also, we have thermal viscous ferromagnetic conducting of \(\Delta (\tau ),\Delta (\nu ),\Delta (\beta )\) bilayered microbeam. Moreover, we demonstrate viscous ferromagnetic phase of heat transport for nanofluid recursional microfluidics normalized thermal \(\Delta (\tau ),\Delta (\nu ),\Delta (\beta )\) radiation in de Sitter space. Finally, we get optical thermal stimulation for microstructured nanofluid recursional microfluidics normalized thermal \(\Delta (\tau ),\Delta (\nu ),\Delta (\beta )\) radiation are constructed by numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Abdulkarim, Y.I., Mohanty, A., Acharya, O.P., Appasani, B., Khan, M.S., Mohapatra, S.K., Dong, J.: A review on metamaterial absorbers: microwave to optical. Front. Phys. 10, 893791 (2022)

    Article  Google Scholar 

  • Anjos, G.R.: Moving mesh methods for two-phase flow systems: assessment, comparison and analysis. Comput. Fluids 228, 105053 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Borys, N.J., Argyropoulos, C., Ye, L.: Light and matter interactions: recent advances in materials, theory, fabrication, and characterization. APL Mater. 10(6), (2022)

  • Cheng, S., Xia, T., Liu, M., Xu, S., Gao, S., Zhang, G., Tao, S.: Optical manipulation of microparticles with the momentum flux transverse to the optical axis. Opt. Laser Technol. 113, 266–272 (2019)

    Article  ADS  Google Scholar 

  • Dong, J., Qiu, Y., Lv, H., Yang, Y., Zhu, Y.: Investigation on microparticle transport and deposition mechanics in rhythmically expanding alveolar chip. Micromachines 12(2), 184 (2021)

    Article  Google Scholar 

  • Eyssa, H.M., El Refay, H.M., Sanad, M.H.: Enhancement of the thermal and physicochemical properties of styrene butadiene rubber composite foam using nanoparticle fillers and electron beam radiation. Radiochim.Acta 110(3), 205–218 (2022)

    Article  Google Scholar 

  • Hussain, S.M., Jamshed, W., Pasha, A.A., Adil, M., Akram, M.: Galerkin finite element solution for electromagnetic radiative impact on viscid Williamson two-phase nanofluid flow via extendable surface. Int. Commun. Heat Mass Transf. 137, 106243 (2022)

    Article  Google Scholar 

  • Körpinar, T., & Körpinar, Z.: Optical modeling for electromagnetic Heisenberg ferromagnetic microscale in Heisenberg group. Waves Random Complex Media 1–28 (2022).

  • Körpinar, T., & Körpinar, Z.: New approach for hybrid electromagnetic phase of hybrid optical fibers. Waves Random Complex Media 1–29 (2023)

  • Körpinar, T., & Körpinar, Z.: New optical hybrid electric and magnetic B2-phase with Landau Lifshitz approach. Waves Random Complex Media 1–27 (2023)

  • Körpinar, Z., Körpinar, T. (2023). New optical recursional spherical ferromagnetic flux for optical sonic microscale. J. Nonlinear Opt. Phys. Mater. 2350051

  • Körpinar, T., Demirkol, R.C.: On the geometric dynamics of the charged point-particle propagated through the spherical optical fiber. Optik 251, 168287 (2022)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical normalized microscale for optical total recursion electromagnetic flux on Heisenberg space SH 2. Opt. Quant. Electron. 54(12), 777 (2022)

    Article  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical hybrid electrical visco ferromagnetic microscale with hybrid electrolytic thruster. Opt. Quant. Electron. 54(12), 826 (2022)

    Article  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical electromagnetic flux fibers with optical antiferromagnetic model. Optik 251, 168301 (2022)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical recursional binormal optical visco Landau-Lifshitz electromagnetic optical density. Commun. Theor. Phys. 75(5), 055003 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Körpinar, T., Körpinar, Z., Demirkol, R.C., Yeneroğlu, M.: Optical quasi flux density of Heisenberg ferromagnetic spin with qHATM approach. Optik 245, 167567 (2021)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Yeneroğlu, M.: New optical total recursion for electromagnetic flux of optical fiber with optical microscale. Optik 264, 169373 (2022)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Yeneroğlu, M.: Optical direction motion and optical optimistic density with magnetic energy. Optik 259, 168822 (2022)

    Article  ADS  Google Scholar 

  • Körpinar, Z., Körpinar, T., Asil, V.: Optical electromagnetic antiferromagnetic flux with electroosmotic velocity in spherical Heisenberg group. Optik 260, 168831 (2022)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Asil, V.: New optical Heisenberg model with timelike optical de Sitter flux density. Optik 265, 169438 (2022)

    Article  ADS  Google Scholar 

  • Korpinar, Z., Inc, M., Korpinar, T.: Ferromagnetic recursion for geometric phase timelike SN-magnetic fibers. Opt. Quant. Electron. 55(4), 382 (2023)

    Article  Google Scholar 

  • Mahian, O., Kianifar, A., Kleinstreuer, C., Mohd, A., Pop, I., Sahin, A.Z., Wongwises, S.: A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 65, 514–532 (2013)

    Article  Google Scholar 

  • Mahian, O., Mahmud, S., Heris, S.Z.: Analysis of entropy generation between co-rotating cylinders using nanofluids. Energy 44(1), 438–446 (2012)

    Article  Google Scholar 

  • Mahian, O., Kianifar, A., Sahin, A.Z., Wongwises, S.: Performance analysis of a minichannel-based solar collector using different nanofluids. Energy Convers. Manage. 88, 129–138 (2014)

    Article  Google Scholar 

  • Mohammed, H.A., Bhaskaran, G., Shuaib, N.H., Saidur, R.: Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renew. Sustain. Energy Rev. 15(3), 1502–1512 (2011)

    Article  Google Scholar 

  • Prakash, S., Yeom, J.: Nanofluidics and microfluidics: systems and applications. William Andrew (2014)

  • Rabiee, N., Ahmadi, S., Fatahi, Y., Rabiee, M., Bagherzadeh, M., Dinarvand, R., Webster, T.J.: Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine 16(3), 237–258 (2020)

    Article  Google Scholar 

  • Raupov, I., Burkhanov, R., Lutfullin, A., Maksyutin, A., Lebedev, A., Safiullina, E.: Experience in the application of hydrocarbon optical studies in oil field development. Energies 15(10), 3626 (2022)

    Article  Google Scholar 

  • Saffarian, M.R., Moravej, M., Doranehgard, M.H.: Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew. Energy 146, 2316–2329 (2020)

    Article  Google Scholar 

  • Salman, B.H., Mohammed, H.A., Munisamy, K.M., Kherbeet, A.S.: Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review. Renew. Sustain. Energy Rev. 28, 848–880 (2013)

    Article  Google Scholar 

  • Seo, J., Kim, I., Seok, J.: Grid-wise simulation acceleration of the electromagnetic fields of 2D optical devices using super-resolution. Sci. Rep. 13(1), 435 (2023)

    Article  ADS  Google Scholar 

  • Sheikholeslami, M., Ganji, D.D.: Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Sci. Iran. 21(1), 203–212 (2014)

    Google Scholar 

  • Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D., Soleimani, S.: Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu-water nanofluid using CVFEM. Adv. Powder Technol. 24(6), 980–991 (2013)

    Article  Google Scholar 

  • Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D.: Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol. 254, 82–93 (2014)

    Article  Google Scholar 

  • Sheikholeslami, M., Haq, R.U., Shafee, A., Li, Z., Elaraki, Y.G., Tlili, I.: Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int. J. Heat Mass Transf. 135, 470–478 (2019)

    Article  Google Scholar 

  • Sheikholeslami, M., Jafaryar, M., Said, Z., Alsabery, A.I., Babazadeh, H., Shafee, A.: Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach. Appl. Therm. Eng. 182, 115935 (2021)

    Article  Google Scholar 

  • Tang, E., Zhao, L., Han, Y., Chen, C., Chang, M.: Discharge and electromagnetic radiation behind the hole of simulated charging satellite surface under impact. Waves Random Complex Media 1–20 (2022)

  • Ting, T.W., Hung, Y.M., Guo, N.: Effects of streamwise conduction on thermal performance of nanofluid flow in microchannel heat sinks. Energy Convers. Manage. 78, 14–23 (2014)

    Article  Google Scholar 

  • Torabi, M., Zhang, K., Mahmud, S.: Temperature and entropy generation analyses between and inside rotating cylinders using copper-water nanofluid. J. Heat Transf. 137(5), 051701 (2015)

    Article  Google Scholar 

  • Wang, X., Cheng, C., Wang, S., Liu, S.: Electroosmotic pumps and their applications in microfluidic systems. Microfluid. Nanofluid. 6, 145–162 (2009)

    Article  Google Scholar 

  • Ying, Z.J.: Scaling relations and topological quadruple points in light-matter interactions with anisotropy and nonlinear stark coupling. Adv. Quantum Technol. 6(1), 2200068 (2023)

    Article  Google Scholar 

  • Zhao, Z., Lan, D., Zhang, L., Wu, H.: A flexible, mechanically strong, and anti-corrosion electromagnetic wave absorption composite film with periodic electroconductive patterns. Adv. Func. Mater. 32(15), 2111045 (2022)

    Article  Google Scholar 

Download references

Funding

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in the planning, execution, or analysis of this study; All authors of this paper have read and approved the final version submitted.

Corresponding author

Correspondence to Zeliha Körpinar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T., Körpinar, Z. Optical viscous quantum ferromagnetic model for thermal radiation. Opt Quant Electron 55, 1156 (2023). https://doi.org/10.1007/s11082-023-05344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05344-0

Keywords

Navigation