Skip to main content
Log in

Magnetic, electronic, optical, thermoelectric, and thermodynamic properties of ErMn0.5Fe0.5O3 perovskite via GGA+U approach and Monte Carlo simulations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we study the structural, magnetic, electronic, optical, thermoelectric, and thermodynamic properties of the perovskite ErMn0.5Fe0.5O3. The Wien2K code's implementation of density functional theory (DFT) was used to perform the first principle calculations for this compound utilizing the full potential linearized augmented plane wave form with Total Potential (FP-LAPW) approach. The GGA-PBE and the exchange–correlation potential with Hubbard correction (GGA+U) were used to calculte the bulk modulus, its first derivative, and the optimal lattice parameters. The compounds display metallic nature in the NM and FM states. While in the AFM state, the compound behaves as a half-metal. The electronic transport coefficients have been calculated. The entropy, thermal expansion coefficient, Debye temperature, and heat capacity Cv are calculated. The Monte-Carlo calculation method shows that the magnetization of this material undergoes a second-order transition at a temperature of Néel, TN = 248 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Not applicable.

References

  • Alam, M., Mandal, K.: Origin of ferroelectricity in multiferroic ErFeO3. Phys. B Cond. Matter. 612, 412935–412946 (2021)

    CAS  Google Scholar 

  • Azzouz-Rached, A., Rached, H., Ouadha, I., Rached, D., Reggad, A.: The vanadium-doping effect on physical properties of the Zr2AlC MAX phase compound. Mater. Chem. Phys. 260, 124189–124198 (2021)

    CAS  Google Scholar 

  • Bellaiche, L.: Piezoelectricity of ferroelectric perovskites from first principles. Current Opin. Solid State Mater. Sci. 6(1), 19–25 (2002)

    CAS  ADS  Google Scholar 

  • Benkabou, A., Bouafia, H., Sahli, B., Abidri, B., Ameri, M., Hiadsi, S., Rached, D., Bouhafs, B., Benkhettou, N., Al-Douri, Y.: Structural, elastic, electronic and thermodynamic investigations of neptunium chalcogenides: first-principles calculations. Chin. J. Phys. 54, 33–41 (2016)

    CAS  Google Scholar 

  • Benmhidi, H., Rached, H., Rached, D., et al.: Ab initio study of electronic structure, elastic and transport properties of fluoroperovskite LiBeF3. J. Electron. Mater. 46, 2205–2210 (2017)

    CAS  ADS  Google Scholar 

  • Blaha, P., Schwartz, K., Madsen, G. K. H., Kvasnicka, D., Luitz, J.: WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Austria (2001)

  • Blanco, M.A., Francisco, E., Luana, V.: GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158(1), 57–72 (2004)

    CAS  ADS  Google Scholar 

  • Blanco, M.A., Pendás, A.M., Francisco, E., Recio, J.M., Franco, R.: Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3. J. Mol. Struct. Theochem. 368, 245–255 (1996)

    CAS  Google Scholar 

  • Bourachid, I., Caid, M., Cheref, O., Rached, D., Heireche, H., Abidri, B., Rached, H., Benkhettou, N.: Insight into the structural, electronic, mechanical and optical properties of inorganic lead bromide perovskite APbBr3 (A = Li, Na, K, Rb, and Cs). Comput. Condens. Matter. 24, e00478–e00477 (2020)

    Google Scholar 

  • Chandran, K., Lekshmi, P.N., Santhosh, P.N.: High temperature spin reorientation, magnetization reversal and magnetocaloric effect in 50% Mn substituted polycrystalline ErFeO3. J. Solid State Chem. 279, 120910 (2019)

    CAS  Google Scholar 

  • Debye, P.: Zur theorie der spezifischen wärmen. Ann. Phys. 344(14), 789–839 (1912)

    Google Scholar 

  • ErchidiElyacoubi, A.S., Masrour, R., Jabar, A.: Monte Carlo simulation study of multiferroic perovskite: YFeO3. Indian J. Phys. 96(5), 1351–1355 (2022)

    CAS  ADS  Google Scholar 

  • Flórez, M., Recio, J.M., Francisco, E., Blanco, M.A., Pendás, A.M.: First-principles study of the Rocksalt–Cesium chloride relative phase stability in alkali halides. Phys. Rev. B 66(14), 144112–8 (2002)

    ADS  Google Scholar 

  • Francisco, E., Blonco, M.A., Sanjurjo, G.: Structural, elastic, electronic, optical and thermal properties of cubic perovskite CsCdF3 under pressure effect. Phys. Rev. B 63, 049107 (2001)

    Google Scholar 

  • Francisco, E., Recio, J.M., Blanco, M.A., Pendás, A.M., Costales, A.: Quantum-mechanical study of thermodynamic and bonding properties of MgF2. J. Phys. Chem. A 102(9), 1595–1601 (1998)

    CAS  Google Scholar 

  • Galasso, F.S., Layden, G.K., Flinchbaugh, D.E.: Ba(B0.5Ta0.5)O3 ordered Perovskite-type compounds, possible new laser host materials. J. Chem. Phys 44, 2703–2707 (1966)

    CAS  ADS  Google Scholar 

  • Georg, K.H., et al.: Boltztrap: A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Google Scholar 

  • Hadji, T., Khalfoun, H., Rached, H., Azzouz-Rached, A.: Spin gapless semiconductor and nearly spin semimetal antiferromagnets: The case of the inverse Heusler compounds Mn2LiZ (Z = Al and Ga). Mater. Rés. Taureau. 143, 111461 (2021)

    CAS  Google Scholar 

  • Hocine, K., Cheref, O., Bettine, K., Rached, D., Benalia, S., Rabah, M., Benkhettou, N., Rached, H.: The structural, electronic, optical and thermo-electric properties of oxynitride perovskite CaTaO2N. Spin 10(01), 2050007-16 (2020)

    CAS  ADS  Google Scholar 

  • Ito, M., Matsuda, T.: Thermoelectric properties of non-doped and Y-doped SrTiO3 polycrystals synthesized by polymerized complex process and hot pressing. J. Alloys Compd. 477(1), 473–477 (2009)

    CAS  Google Scholar 

  • Javdani, Z., Badehian, H.A., Salehi, H., Amiri, P.: First principles calculations of optical and magnetic properties of SrFe2O4 compound under pressure. Phys. Lett. A 378, 2644–2650 (2014)

    CAS  ADS  Google Scholar 

  • Liu, Y.X., Lian, J., Sun, Z.Z., Zhao, M.L., Shi, Y.J., Song, H.N.: The first-principles study for the novel optical properties of LiTi2O4, Li4Ti5O12, Li2Ti2O4 and Li7Ti5O12. Chem. Phys. Lett. 677, 114–119 (2017)

    CAS  ADS  Google Scholar 

  • Lone, I.H., Aslam, J., Radwan, N.R.E., Bashal, A.H., Ajlouni, A.F.A., Akhter, A.: Multiferroic ABO3 transition metal oxides: a rare interaction of ferroelectricity and magnetism. Nanoscale Res. Lett. 14(1), 142–153 (2019)

    PubMed  PubMed Central  ADS  Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    CAS  ADS  Google Scholar 

  • Millis, A.J., Shraiman, B.I., Mueller, R.: Dynamic Jahn-Teller effect and colossal magnetoresistance in La1xSrxMnO3. Phys. Rev. Lett 77(1), 175–178 (1996)

    CAS  PubMed  ADS  Google Scholar 

  • Mir, S.A., Seh, A.Q., Gupta, D.C.: New ferromagnetic half-metallic perovskites for spintronic applications: BaMO3 (M = Mg and Ca). RSC Adv 10(60), 36241–36252 (2020)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Mostovoy, M.: Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96(6), 067601-4 (2006)

    PubMed  ADS  Google Scholar 

  • Mousa, A.A., Abu-Jafar, M.S., Dahliah, D., Shaltaf, R.M., Khalifeh, J.M.: Investigation of the perovskite KSrX3 (X= Cl and F) compounds, examining the optical, elastic, electronic and structural properties: FP-LAPW study. J. Electron. Mater. 47, 641–650 (2018)

    CAS  ADS  Google Scholar 

  • Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. u.s.a. 30(9), 244–247 (1944)

    MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Pal, A., Prellier, W., Murugavel, P.: Spin-flop and magnetodielectric reversal in Yb substituted GdMnO3. J. Phys. Condens. Matter 30(12), 125801-18 (2018)

    CAS  PubMed  ADS  Google Scholar 

  • Perdew, P.J., Burke, K., Wang, Y.: Generalized gradient approximation forthe exchange-correlation hole of a many-electron system. Phys. Rev. B. 54, 16533-7 (1996)

    CAS  ADS  Google Scholar 

  • Rached, H., Rached, D., Rabah, M., Khenata, R., Reshak, A.H.: Full-potential calculation of the structural, elastic, electronic and magnetic properties of XFeO3 (X = Sr and Ba) perovskite. Phys. B Condens. Matter. 405(17), 3515–3519 (2010)

    CAS  ADS  Google Scholar 

  • Ramanathan, A.A.: New half metal perovskite NbScO3 for spintronic sensing applications. Chem. Proc. 5(1), 82–86 (2021)

    Google Scholar 

  • Rashed, A.A., Ouadha, I., Husain, M., Rashed, H., Rekab-Djabri, H., Bentouaf, A., Hadji, T., Sfina, N., Albawali, H., Tirth, V., Amin, M., Rahman, A.N.: First-principles calculations to investigate physical properties of orthorhombic perovskite YBO3 (B = Ti & Fe) for high energy applications. RSC Adv. 13(7), 4138–4149 (2023)

    ADS  Google Scholar 

  • Rehman, U., Mahmood, K., Ali, A., Ashfaq, A., Rehman, A., un Nabi, M.A., Hussain, S.: Optimizing the electrical transport properties of ZnSnO thin films by post growth annealing in air. Optik 204, 164148-6 (2019)

    ADS  Google Scholar 

  • Saad, H.-E., Musa, M., Alsobhi, B.O.: Consequences of tuning rare-earth RE3+-site and exchange-correlation energy U on the optoelectronic, mechanical, and thermoelectronic properties of cubic manganite perovskites REMnO3 for spintronics and optoelectronics applications. ACS Omega 7(32), 27903–27917 (2022)

    Google Scholar 

  • Sahu, J.R., Ghosh, A., Sundaresan, A., Rao, C.N.R.: Multiferroic properties of ErMnO3. Mater. Res. Bull. 44(11), 2123–2126 (2009)

    CAS  Google Scholar 

  • Tokura, Y.: Oxydes magnétorésistifs colossaux. Édition1èr eBook ISBN9780429177958, p. 52 (2000)

  • Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401-4 (2009)

    PubMed  ADS  Google Scholar 

  • Walker, F.J., McKee, R.A., Yen, H., Zelmon, D.E.: Optical clarity and waveguide performance of thin film perovskites on MgO. Appl. Phys. Lett 65(12), 1495–1497 (1994)

    CAS  ADS  Google Scholar 

  • Yan, J., Gomi, M., Yokota, T., Song, H.: Phase transition and huge ferroelectric polarization observed in BiFe1−xGaxO3 thin films. Appl. Phys. Lett 102(22), 222906-4 (2013)

    ADS  Google Scholar 

  • Zaari, H., El Hachimi, A.G., Benyoussef, A., El Kenz, A.: Comparative study between TB-mBJ and GGA+U on magnetic and optical properties of CdFe2O4. J. Magn. Magn. Mater 393, 183–187 (2015)

    CAS  ADS  Google Scholar 

  • Zhu, X.-H., Xiao, X.-B., Chen, X.-R., Liu, B.-G.: Electronic structure, magnetism and optical properties of orthorhombic GdFeO3 from first principles. RCS. Adv. 7, 4054–4061 (2017)

    CAS  Google Scholar 

  • Ziati, M., Ez-Zahraouy, H.: Theoretical investigation of electronic, optical and thermoelectric properties of tellurium doped barium titanate (BTO) through modified Becke–Johnson exchange potential. Optik 231, 166440-13 (2021)

    CAS  ADS  Google Scholar 

Download references

Funding

No funding source.

Author information

Authors and Affiliations

Authors

Contributions

MI: Conceptualization, Methodology, Software, Investigation, Validation, Formal analysis, Formal analysis, No funding acquisition, Writing- Original draft preparation, Writing- Reviewing and Editing, Supervision, Project administration. RM: Conceptualization, Methodology, Software, Investigation, Validation, Formal analysis, Formal analysis, No funding acquisition, Writing- Original draft preparation, Writing- Reviewing and Editing, Supervision, Project administration.

Corresponding author

Correspondence to R. Masrour.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imami, M., Masrour, R. Magnetic, electronic, optical, thermoelectric, and thermodynamic properties of ErMn0.5Fe0.5O3 perovskite via GGA+U approach and Monte Carlo simulations. Opt Quant Electron 56, 57 (2024). https://doi.org/10.1007/s11082-023-05334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05334-2

Keywords

Navigation