Skip to main content
Log in

Radiated power and directivity analysis of a nano-dot photoconductive antenna

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The lower efficiency of a Photoconductive Antenna is a significant bottleneck in using them for several applications. This manuscript presents a solution to improve the photoconductive antenna performance using the nano-dot structures in the electrode’s gap. This study analyses the nano-dots’ shape, size, and spacing effects on the current pulse and the frequency response of a normal photoconductive antenna. For the analysis, square, hexagonal, and circular shape dots are considered with different sizes and spacing. The optimization study shows that not all combinations enhance photoconductive antenna performance using the above-defined dots. The circular dot photoconductive antenna produces an enhancement of 63.16 and 166.2% in the current pulse amplitude and radiated power, respectively, using different combinations of nano-dot size and gap. The frequency response analysis shows that the circular dot photoconductive antenna produces highest directivity (8.76 dBi) among all the nano-dot geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All of the data is provided in the manuscript. Any additional information will be provided on the request.

References

  • Arora, N.D., Hauser, J.R., Roulston, D.J.: Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Devices 29(2), 292–295 (1982)

    ADS  Google Scholar 

  • Bashirpour, M., Poursafar, J., Kolahdouz, M., Hajari, M., Forouzmehr, M., Neshat, M., Hajihoseini, H., Fathipour, M., Kolahdouz, Z., Zhang, G.: Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAs using a gold plasmonic nanodisk array. Opt. Laser Technol. 120, 105726 (2019)

    Google Scholar 

  • Blakemore, J.S.: Gallium Arsenide: Edited by John S. Blakemore. Springer, Berlin (1961)

    Google Scholar 

  • Burford, N.M., El-Shenawee, M.O.: Review of terahertz photoconductive antenna technology. Opt. Eng. 56(1), 010901 (2017)

    ADS  Google Scholar 

  • Burford, N.M., Evans, M.J., El-Shenawee, M.O.: Plasmonic nanodisk thin-film terahertz photoconductive antenna. IEEE Trans. Terahertz Sci. Technol. 8(2), 237–247 (2017)

    ADS  Google Scholar 

  • Caughey, D., Thomas, R.: Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192–2193 (1967)

    Google Scholar 

  • Chan, W.L., Deibel, J., Mittleman, D.M.: Imaging with terahertz radiation. Rep. Prog. Phys. 70(8), 1325 (2007)

    ADS  Google Scholar 

  • Dragoman, D., Dragoman, M.: Terahertz fields and applications. Prog. Quantum Electron. 28(1), 1–66 (2004)

    ADS  MATH  Google Scholar 

  • Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., Zimdars, D.: THz imaging and sensing for security applications-explosives, weapons and drugs. Semicond. Sci. Technol. 20(7), 266 (2005)

    ADS  Google Scholar 

  • Ferguson, B., Zhang, X.-C.: Materials for terahertz science and technology. Nat. Mater. 1(1), 26–33 (2002)

    ADS  Google Scholar 

  • Gric, T., Gorodetsky, A., Trofimov, A., Rafailov, E.: Tunable plasmonic properties and absorption enhancement in terahertz photoconductive antenna based on optimized plasmonic nanostructures. J. Infrared Millim. Terahertz Waves 39(10), 1028–1038 (2018)

    Google Scholar 

  • Jepsen, P.U., Cooke, D.G., Koch, M.: Terahertz spectroscopy and imaging-modern techniques and applications. Laser Photonics Rev. 5(1), 124–166 (2011)

    ADS  Google Scholar 

  • Jiang, R., Cheng, S., Li, Q., Wang, Q., Xin, Y.: Terahertz radiation enhancement based on LT-GaAs by optimized plasmonic nanostructure. Laser Phys. 31(3), 036203 (2021)

    ADS  Google Scholar 

  • Jooshesh, A., Smith, L., Masnadi-Shirazi, M., Bahrami-Yekta, V., Tiedje, T., Darcie, T.E., Gordon, R.: Nanoplasmonics enhanced terahertz sources. Opt. Express 22(23), 27992–28001 (2014)

    ADS  Google Scholar 

  • Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2549–2554 (2003)

    ADS  Google Scholar 

  • Kemp, M.C., Taday, P., Cole, B.E., Cluff, J., Fitzgerald, A.J., Tribe, W.R.: Security applications of terahertz technology. In: Terahertz for Military and Security Applications, vol. 5070, pp. 44–52. SPIE (2003)

  • Khorshidi, M., Zafari, S., Dadashzadeh, G.: Increase in terahertz radiation power of plasmonic photoconductive antennas by embedding buried three-stepped rods in electrodes. Opt. Express 27(16), 22327–22338 (2019)

    ADS  Google Scholar 

  • Kleine-Ostmann, T., Nagatsuma, T.: A review on terahertz communications research. J. Infrared Millim Terahertz Waves 32(2), 143–171 (2011)

    Google Scholar 

  • Lepeshov, S., Gorodetsky, A., Krasnok, A., Toropov, N., Vartanyan, T.A., Belov, P., Alú, A., Rafailov, E.U.: Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures. Sci. Rep. 8(1), 1–7 (2018)

    Google Scholar 

  • Lewis, R.A.: A review of terahertz sources. J. Phys. D Appl. Phys. 47(37), 374001 (2014)

    Google Scholar 

  • Loata, G.C.: Investigation of low-temperature-grown GaAs photoconductive antennae for continuous-wave and pulsed terahertz generation. PhD thesis, Citeseer (2007)

  • Markelz, A., Roitberg, A., Heilweil, E.J.: Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320(1–2), 42–48 (2000)

    ADS  Google Scholar 

  • Matsuura, S., Tani, M., Sakai, K.: Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett. 70(5), 559–561 (1997)

    ADS  Google Scholar 

  • Mittleman, D.M.: Frontiers in terahertz sources and plasmonics. Nat. Photonics 7(9), 666–669 (2013)

    ADS  Google Scholar 

  • Mittleman, D.M., Jacobsen, R.H., Neelamani, R., Baraniuk, R.G., Nuss, M.C.: Gas sensing using terahertz time-domain spectroscopy. Appl. Phys. B 67(3), 379–390 (1998)

    ADS  Google Scholar 

  • Nagai, N., Imai, T., Fukasawa, R., Kato, K., Yamauchi, K.: Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy. Appl. Phys. Lett. 85(18), 4010–4012 (2004)

    ADS  Google Scholar 

  • Nagel, M., Först, M., Kurz, H.: Thz biosensing devices: fundamentals and technology. J. Phys.: Condens. Matter 18(18), 601 (2006)

    ADS  Google Scholar 

  • Nguyen, T.K., Rotermund, F., Park, I.: A traveling-wave stripline dipole antenna on a substrate lens at terahertz frequency. Curr. Appl. Phys. 14(8), 998–1004 (2014)

    ADS  Google Scholar 

  • Park, S.-G., Choi, Y., Oh, Y.-J., Jeong, K.-H.: Terahertz photoconductive antenna with metal nanoislands. Opt. Express 20(23), 25530–25535 (2012)

    ADS  Google Scholar 

  • Piao, Z., Tani, M., Sakai, K.: Carrier dynamics and terahertz radiation in photoconductive antennas. Jpn. J. Appl. Phys. 39(1R), 96 (2000)

    ADS  Google Scholar 

  • Pickwell, E., Wallace, V.: Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39(17), 301 (2006)

    ADS  Google Scholar 

  • Pillai, J., Yadav, D., Prajapati, J., Upadhayay, M.D., Babu, N.: Optimization analysis of a nano-dot photoconductive antenna. In: 2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO) (2022)

  • Prajapati, J., Bharadwaj, M., Chatterjee, A., Bhattacharjee, R.: Circuit modeling and performance analysis of photoconductive antenna. Opt. Commun. 394, 69–79 (2017)

    ADS  Google Scholar 

  • Prajapati, J., Bharadwaj, M., Chatterjee, A., Bhattacharjee, R.: Magnetic field-assisted radiation enhancement from a large aperture photoconductive antenna. IEEE Trans. Microw. Theory Tech. 66(2), 678–687 (2018)

    ADS  Google Scholar 

  • Prajapati, J., Bharadwaj, M., Chatterjee, A., Bhattacharjee, R.: Radiation field analysis of a photoconductive antenna using an improved carrier dynamics. Semicond. Sci. Technol. 34(2), 024004 (2019)

    ADS  Google Scholar 

  • Redo-Sanchez, A., Laman, N., Schulkin, B., Tongue, T.: Review of terahertz technology readiness assessment and applications. J. Infrared Millim. Terahertz Waves 34(9), 500–518 (2013)

    Google Scholar 

  • Siegel, P.H.: Terahertz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)

    ADS  Google Scholar 

  • Siegel, P.H.: Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004)

    ADS  Google Scholar 

  • Smith, P.R., Auston, D.H., Nuss, M.C.: Subpicosecond photoconducting dipole antennas. IEEE J. Quantum Electron. 24(2), 255–260 (1988)

    ADS  Google Scholar 

  • Song, Q., Zhao, Y., Redo-Sanchez, A., Zhang, C., Liu, X.: Fast continuous terahertz wave imaging system for security. Opt. Commun. 282(10), 2019–2022 (2009)

    ADS  Google Scholar 

  • Synopsys TCAD.: https://www.synopsys.com/manufacturing/tcad.html (2022)

  • Systemes, D.: CST Studio Suite Electromagnetic Field Simulation Software. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (2022)

  • Sze, S.M.: Semiconductor Devices: Physics and Technology. John Wiley & Sons, New York (2008)

    Google Scholar 

  • Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007)

    ADS  Google Scholar 

  • Van Zandt, L., Saxena, V.: Millimeter-microwave spectrum of DNA: six predictions for spectroscopy. Phys. Rev. A 39(5), 2672 (1989)

    ADS  Google Scholar 

  • Verdeyen, J.T.: Laser Electronics. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Woodward, R., Wallace, V., Arnone, D., Linfield, E., Pepper, M.: Terahertz pulsed imaging of skin cancer in the time and frequency domain. J. Biol. Phys. 29(2), 257–259 (2003)

    Google Scholar 

  • Yardimci, N.T., Jarrahi, M.: High sensitivity terahertz detection through large-area plasmonic nano-antenna arrays. Sci. Rep. 7(1), 1–8 (2017)

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Prajapati.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This declaration is “not applicable”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, J., Upadhayay, M.D. & Prajapati, J. Radiated power and directivity analysis of a nano-dot photoconductive antenna. Opt Quant Electron 55, 1017 (2023). https://doi.org/10.1007/s11082-023-05322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05322-6

Keywords

Navigation