Skip to main content
Log in

Quantum Fourier states and gates: teleportation via rough entanglement

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Quantum Fourier gates (QFG) constitute a complete family of quantum gates that result from an exact combination of the quantum Fourier transform (QFT) and the SWAP gate. Therefore, the Feynman Gate constitutes the simplest example of this family, while the Bell states are the simplest cases of entangled states derived from the family. Moreover, this new tool will allow us to demonstrate that teleportation is not something that happens exclusively thanks to maximally and non-maximally entangled states, but that it is also possible with an incomplete form of entanglement known as rough entanglement. Finally, other applications necessary for the quantum Internet are incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

The experimental data that support the findings of this study are available in ResearchGate with the identifier https://doi.org/10.13140/RG.2.2.24802.20161.

References

  • Adhikari, S., et al.: Teleportation via maximally and non-maximally entangled mixed states. ACM, Quant. Inf. Comput. 10(5), 398–419 (2010)

    MathSciNet  MATH  Google Scholar 

  • Behera, B.K., et al.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quant. Inf. Process. 18, 108 (2019)

    Article  ADS  MATH  Google Scholar 

  • Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cacciapuoti, A.S., et al.: The quantum internet: networking challenges in distributed quantum computing. IEEE Netw. 34(1), 137–143 (2020a)

    Article  MathSciNet  Google Scholar 

  • Cacciapuoti, A.S., et al.: When entanglement meets classical communications: quantum Telepor-tation for the quantum internet. IEEE Trans. Comm. 68(6), 3808–3833 (2020b)

    Article  Google Scholar 

  • Caleffi, M., et al.: The rise of the quantum internet. Computer 53(06), 67–72 (2020)

    Article  Google Scholar 

  • Campbell, S., Paternostro, M.: Teleporting bipartite entanglement using maximally entangled mixed channels. Int. J. Quant. Inf. 8(1–2), 105–119 (2010)

    Article  MATH  Google Scholar 

  • Cariolaro, G.: Quantum Communications: Signals and Communication Technology. Springer, N.Y. (2015)

    Book  MATH  Google Scholar 

  • Gruska, J. Quantum computing (McGraw-Hill, N.Y., 1999–2005)

  • Gyongyosi, L., Imre, S.: Entanglement access control for the quantum Internet. Quant. Inf. Process 18, 107 (2019a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gyongyosi, L., Imre, S.: Opportunistic entanglement distribution for the quantum internet. Sci. Rep. 9, 2219 (2019b)

    Article  ADS  MATH  Google Scholar 

  • Gyongyosi, L., Imre, S.: Entanglement accessibility measures for the quantum internet. Quant. Inf. Proc. 19, 115 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Hiskett, P.A., et al.: Long-distance quantum key distribution in optical fibre. New J. Phys. 8, 193 (2006)

    Article  ADS  Google Scholar 

  • IBM quantum experience, https://quantum-computing.ibm.com/ (last accessed 5 April 2022)

  • Joy, D., et al.: Implementation of quantum secret sharing and quantum binary voting protocol in the IBM quantum computer. Quant. Inf. Process. 19, 33 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Koniorczyk, M., Bužek, V.: Nonmaximally entangled bases and their application in entanglement purification via swapping. Phys. Rev. A 71, 032331 (2005)

    Article  ADS  Google Scholar 

  • Kumar, N., et al. (eds.): Limitations and Future Applications of Quantum Cryptography. IGI Global, Hershey (2021)

    Google Scholar 

  • Mastriani, M.: Fourier’s quantum information processing. SN Comput. Sci. 2, 122 (2021a)

    Article  Google Scholar 

  • Mastriani, M.: On the spectral nature of entanglement. IET Quant. Comm. 2, 8–13 (2021b)

    Article  Google Scholar 

  • Mastriani, M.: Quantum Fourier transform is the building block for creating entanglement. Sci. Rep. 11, 22210 (2021c)

    Article  ADS  Google Scholar 

  • Mastriani, M.: Fourier behind entanglement: a spectral approach to the quantum internet. Ann. Phys. 524, 1 (2021d)

    MathSciNet  Google Scholar 

  • Mehic, M., et al.: Quantum key distribution: a networking perspective. ACM Comput. Surveys 53(5), 96–914 (2020)

    Google Scholar 

  • Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, N.Y. (2004)

    MATH  Google Scholar 

  • Quantum Inspire by QuTech, https://www.quantum-inspire.com/ (last accessed 5 April 2022)

  • Quantum programming studio, https://quantum-circuit.com/ (last accessed 5 April 2022).

  • Quirk simulator, https://algassert.com/ quirk (last accessed 5 April 2022)

  • Rigetti, https://qcs.rigetti.com/ (last accessed 5 April 2022)

  • Roy, S., Ghosh, B.: A revisit to non-maximally entangled mixed states: teleportation witness noisy channel and discord. Quant. Inf. Process 16, 108 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ruihong, Q., Ying, M.: Research progress of quantum repeaters. IOP J. Phys. Conf. Ser. 1237, 052032 (2019)

    Article  Google Scholar 

  • Sharma, V.: Feasibility of temperature sensors in railway coaches. Int. J. Sci. Eng. Res 5(2), 881–884 (2014)

    Google Scholar 

  • Sharma, V.: Effect of noise on practical quantum communication systems. Def. Sci. J. 66(2), 186–192 (2016)

    Article  Google Scholar 

  • Sharma, V., Banerjee, S.: Quantum communication using code division multiple access network. Opt. Quant. Electron. 52(8), 1–22 (2020)

    Article  Google Scholar 

  • Sharma, V., Panchariya, P.C.: Experimental use of electronic nose for odour detection. Int. J. Eng. Syst. Modell. Simu. 7(4), 238–243 (2015)

    Google Scholar 

  • Sharma, V., Sharma, R.: Analysis of spread spectrum in MATLAB. Int. J. Sci. Eng. Res 5(1), 1899–1902 (2014)

    Google Scholar 

  • Sharma, V., Shrikant, U., Srikanth, R., Banerjee, S.: Decoherence can help quantum cryptographic security. Quant. Inf. Process. 17, 1–16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Sharma, V., Gupta, S., Mehta, G., Lad, B.K.: A quantum-based diagnostics approach for additive manufacturing machine. IET Collab. Intell. Manuf. 3(2), 184–192 (2021)

    Article  Google Scholar 

  • Sharma, V. Analysis of single photon detectors in differential phase shift quantum key distribu-tion. arXiv preprint arXiv:2307.03593 (2023)

  • Sharma, V., Banerjee, S. Analysis of quantum key distribution-based satellite communication. In: 2018 IEEE 9th International conference on computing, communication and networking technologies (ICCCNT), 1–5 (2018).

  • Sharma, V., Bhardwaj, A. Analysis of differential phase shift quantum key distribution using single-photon detectors. In 2022 IEEE International conference on numerical simulation of optoelectronic devices (NUSOD), 17–18 (2022)

  • Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The author has not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MM conceived the idea and fully developed the theory, developed the experiments on the simulator and the optical table, wrote the complete manuscript, prepared figures, and reviewed the manuscript.

Corresponding author

Correspondence to Mario Mastriani.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastriani, M. Quantum Fourier states and gates: teleportation via rough entanglement. Opt Quant Electron 55, 1111 (2023). https://doi.org/10.1007/s11082-023-05299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05299-2

Keywords

Navigation