Skip to main content
Log in

The optoelectronic enhancement in perovskite solar cells using plasmonic metal-dielectric core-shell and nanorod nanoparticles

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This report systematically demonstrated the plasmonic and localized surface plasmon resonance (LSPR) effect in the perovskite solar cells (PSCs) using MAPbI3 as an active layer. The finite element method (FEM) was employed for the entire simulation of PSCs. Various light trapping and smooth charge carrier dynamics geometries with tailored nanoparticles (NPs) radius and core-shell thickness like Au NPs, Au@TiO2 core-shell, and Au@TiO2 nanorods (NR) were incorporated in the active layer. We observed their effect on PSC's optical absorption, charge carrier generation, and power conversion efficiency (PCE). The light absorption, generation rate, and short-circuit current density (JSC) were improved after embedding Au NPs with varying radii in the active layer. The best PCE achieved for Au NPs with a radius (AuNPs = 50 nm) was compared to the reference model without Au NPs (14.32 %). This increment in PCE is dedicated to the strong LSPR effect and improved JSC. The other cases, like Au@TiO2 core-shell and Au@TiO2 NR, also performed better than the reference model and Au NPs-based PSCs. The highest PCEs achieved for Au@TiO2 core-shell and Au@TiO2 NR were 16.52 % and 18.47 % Which is 15.53 %, and 28.98 %, higher than the reference model. This improvement in the performance of Au@TiO2 core-shell and Au@TiO2 NR-based PSCs is due to the strong LSPR effect, near-field enhancement, far-field scattering, increase in the generation rate of the exciton, and the overall performance of PSCs. These investigations contribute to further exploring the emerging technology of plasmonic-based PSCs and propose promising techniques to enhance photon energy and charge carrier dynamic management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdelraouf, O.A., Allam, N.K.: Nanostructuring for enhanced absorption and carrier collection in CZTS-based solar cells: coupled optical and electrical modeling. Opt. Mater. 54, 84–88 (2016)

    ADS  Google Scholar 

  • Aeineh, N., Barea, E.M., Behjat, A., Sharifi, N., Mora-Seró, I.: Inorganic surface engineering to enhance perovskite solar cell efficiency. ACS Appl. Mater. Interfaces. 9(15), 13181–13187 (2017)

    Google Scholar 

  • Ai, B., Fan, Z., Wong, Z.J.: Plasmonic–perovskite solar cells, light emitters, and sensors. Microsyst. Nanoeng. 8(1), 1–28 (2022)

    ADS  Google Scholar 

  • Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z.: An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renewable Sustain. Energy Rev. 141, 110726 (2021a)

    Google Scholar 

  • Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z., Katubi, K.M.M.: Recent advances of perovskite solar cells embedded with plasmonic nanoparticles. Physica Status Solidi 218(17), 2100310 (2021)

    ADS  Google Scholar 

  • Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z.: Enhancing the efficiency of polymer solar cells by embedding Au@AgNPs Durian shape in buffer layer. Sol. Energy 214, 565–574 (2021c)

    ADS  Google Scholar 

  • Alkhalayfeh, M.A., Abdul Aziz, A., Pakhuruddin, M.Z., Katubi, K.M.M.: Spiky durian-shaped Au@Ag nanoparticles in PEDOT: PSS for improved efficiency of organic solar cells. Materials 14(19), 5591 (2021)

    ADS  Google Scholar 

  • Alkhalayfeh, M.A., Abdul Aziz, A., Pakhuruddin, M.Z., Katubi, K.M.M., Ahmadi, N.: Recent development of indoor organic photovoltaics. Physica Status Solidi (a) 219(5), 2100639 (2022)

    ADS  Google Scholar 

  • Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z., Katubi, K.M.M.: Plasmonic effects of Au@Ag nanoparticles in buffer and active layers of polymer solar cells for efficiency enhancement. Materials 15(16), 5472 (2022b)

    ADS  Google Scholar 

  • Anaya, M., Lozano, G., Calvo, M.E., Míguez, H.: ABX3 perovskites for tandem solar cells. Joule 1(4), 769–793 (2017)

    Google Scholar 

  • Ball, J.M., et al.: Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8(2), 602–609 (2015). https://doi.org/10.1039/C4EE03224A

    Article  MathSciNet  Google Scholar 

  • Baum, M., Alexeev, I., Latzel, M., Christiansen, S.H., Schmidt, M.: Determination of the effective refractive index of nanoparticulate ITO layers. Opt. Expr. 21(19), 22754–22761 (2013)

    ADS  Google Scholar 

  • Bhandari, S., Roy, A., Ghosh, A., Mallick, T.K., Sundaram, S.: Performance of WO3-incorporated carbon electrodes for ambient mesoscopic perovskite solar cells. ACS Omega 5(1), 422–429 (2019)

    Google Scholar 

  • Brittman, S., Adhyaksa, G.W.P., Garnett, E.C.: The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Communications 5(1), 7–26 (2015)

    Google Scholar 

  • Carretero-Palacios, S., Calvo, M.E., Míguez, H.: Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles. J. Phys. Chem. C 119(32), 18635–18640 (2015)

    Google Scholar 

  • Carretero-Palacios, S., Jiménez-Solano, A., Míguez, H.: Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide. ACS Energy Lett. 1(1), 323–331 (2016)

    Google Scholar 

  • Casas, G., Cappelletti, M.Á., Cedola, A.P., Soucase, B.M., y Blancá, E.P.: Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlatt. Microstruct. 107, 136–143 (2017)

    ADS  Google Scholar 

  • Chaiyachate, P., Dasri, T.: Optical absorption and scattering properties of the active layer of perovskite solar cells incorporated silver nanoparticles. Orient. J. Chem 33(2), 807 (2017)

    Google Scholar 

  • Chang, S.H., Lin, K.-F., Chiang, C.-H., Chen, S.-H., Wu, C.-G.: Plasmonic structure enhanced exciton generation at the interface between the perovskite absorber and copper nanoparticles. Scient. World J. (2014). https://doi.org/10.1155/2014/128414

    Article  Google Scholar 

  • Cheng, P.-J., et al.: Full-spectrum analysis of perovskite-based surface plasmon nanolasers. Nanoscale Res. Lett. 15(1), 1–9 (2020)

    ADS  Google Scholar 

  • Fan, R., et al.: Tailored Au@ TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. J. Mater. Chem. A 5(24), 12034–12042 (2017)

    ADS  Google Scholar 

  • Gavrilov, S., Dronov, A., Shevyakov, V., Belov, A., Poltoratskii, E.: Ways to increase the efficiency of solar cells with extremely thin absorption layers. Nanotechnol. Russ. 4(3), 237–243 (2009)

    Google Scholar 

  • Grinberg, I., et al.: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503(7477), 509–512 (2013)

    ADS  Google Scholar 

  • Hajjiah, A., Kandas, I., Shehata, N.: Efficiency enhancement of perovskite solar cells with plasmonic nanoparticles: a simulation study. Materials 11(9), 1626 (2018)

    ADS  Google Scholar 

  • Heidarzadeh, H.: Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell. Mater. Res. Expr. 5(3), 036208 (2018)

    ADS  Google Scholar 

  • Hirasawa, M., Ishihara, T., Goto, T., Uchida, K., Miura, N.: Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3. Physica B 201, 427–430 (1994)

    ADS  Google Scholar 

  • Jaffe, J.E., Kaspar, T.C., Droubay, T.C., Varga, T., Bowden, M.E., Exarhos, G.J.: Electronic and defect structures of CuSCN. J. Phys. Chem. C 114(19), 9111–9117 (2010)

    Google Scholar 

  • Jamal, M., et al.: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew. Sustain. Energy Rev. 98, 469–488 (2018)

    Google Scholar 

  • Khan, D., Sajid, S., Khan, S., Park, J., Ullah, I.: Identifying the potentials for charge transport layers free np homojunction-based perovskite solar cells. Sol. Energy 238, 69–77 (2022)

    ADS  Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Google Scholar 

  • Kordrostami, Z., Yadollahi, A.: High absorption enhancement of invert funnel and conical nanowire solar cells with forward scattering. Optics Commun. 459, 125059 (2020)

    Google Scholar 

  • Lee, S.-W., et al.: Perovskites fabricated on textured silicon surfaces for tandem solar cells. Commun. Chem. 3(1), 1–11 (2020)

    MathSciNet  Google Scholar 

  • Luo, Q., et al.: Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017)

    Google Scholar 

  • Mahmood, K., Sarwar, S., Mehran, M.T.: Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv. 7(28), 17044–17062 (2017)

    ADS  Google Scholar 

  • Min, H., et al.: Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021)

    ADS  Google Scholar 

  • Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 054505 (2014)

    ADS  Google Scholar 

  • Mohammadi, M.H., Eskandari, M., Fathi, D.: Improving the efficiency of perovskite solar cells via embedding random plasmonic nanoparticles: optical–electrical study on device architectures. Sol. Energy 221, 162–175 (2021a)

    ADS  Google Scholar 

  • Mohammadi, M.H., Fathi, D., Eskandari, M.: Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: a numerical study. Energy Rep. 7, 1404–1415 (2021b)

    Google Scholar 

  • Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)

    ADS  Google Scholar 

  • Pathak, N.K., Sharma, R.: Study of surface plasmon resonance of core-shell nanogeometry under the influence of perovskite dielectric environment: electrostatic approximation. AIP Conf. Proceed. 1731(1), 050063 (2016)

    Google Scholar 

  • Pattanasattayavong, P., et al.: Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper (I) thiocyanate (CuSCN) processed from solution at room temperature. Adv. Mater. 25(10), 1504–1509 (2013)

    Google Scholar 

  • Pattanasattayavong, P., et al.: Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chem. Commun. 49(39), 4154–4156 (2013). https://doi.org/10.1039/C2CC37065D

    Article  Google Scholar 

  • Qin, P., et al.: Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5(1), 1–6 (2014)

    Google Scholar 

  • Roß, M., et al.: Co-evaporated pin perovskite solar cells beyond 20% efficiency: impact of substrate temperature and hole-transport layer. ACS Appl. Mater. Interfaces. 12(35), 39261–39272 (2020)

    Google Scholar 

  • Sajid, S., et al.: Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 51, 408–424 (2018a)

    Google Scholar 

  • Sajid, S., et al.: Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Letters 10(3), 1–11 (2018b)

    ADS  Google Scholar 

  • Sajid, S., et al.: NiO@ carbon spheres: a promising composite electrode for scalable fabrication of planar perovskite solar cells at low cost. Nano Energy 55, 470–476 (2019)

    Google Scholar 

  • Sajid, S., et al.: Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells. Renew. Sustain. Energy Rev. 152, 111689 (2021)

    Google Scholar 

  • Sajid, S., Alzahmi, S., Salem, I.B., Obaidat, I.M.: Perovskite-surface-confined grain growth for high-performance perovskite solar cells. Nanomaterials 12(19), 3352 (2022)

    Google Scholar 

  • Singh, B.K., Bijalwan, A., Rastogi, V.: Enhancement of light harvesting efficiency of perovskite solar cells by using one-dimensional photonic crystals. Appl. Opt. 58(29), 8046–8054 (2019)

    ADS  Google Scholar 

  • Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013)

    Google Scholar 

  • Tang, M., et al.: Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells. Appl. Phys. Lett. 109(18), 183901 (2016)

    ADS  Google Scholar 

  • Tang, Z.-K., Xu, Z.-F., Zhang, D.-Y., Hu, S.-X., Lau, W.-M., Liu, L.-M.: Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Sci. Rep. 7(1), 1–7 (2017)

    ADS  Google Scholar 

  • Tooghi, A., Fathi, D., Eskandari, M.: High-performance perovskite solar cell using photonic– plasmonic nanostructure. Sci. Rep. 10(1), 1–13 (2020)

    Google Scholar 

  • Ullah, I., Saghaei, H., Khan, J., Shah, S.K.: The role of plasmonic metal-oxides core-shell nanoparticles on the optical absorption of Perovskite solar cells. Opt. Quant. Electron. 54(10), 1–13 (2022a)

    Google Scholar 

  • Ullah, I., Saghaei, H., Khan, J., Shah, S.K.: The role of plasmonic metal-oxides core-shell nanoparticles on the optical absorption of Perovskite solar cells. Opt. Quantum Electron. 54(10), 675 (2022)

    Google Scholar 

  • Vafapoor, B., Fathi, D., Eskandari, M.: ZnS/Al2S3 layer as a blocking layer in quantum dot sensitized solar cells. J. Electron. Mater. 47(3), 1932–1936 (2018)

    ADS  Google Scholar 

  • Vodenicharov, C., Parvanov, S., Vodenicharova, M.: Bulk—limited conductivity in germanium monoselenide films. Mater. Chem. Phys. 21(5), 455–461 (1989)

    Google Scholar 

  • Wang, X., Wu, G., Zhou, B., Shen, J.: Optical constants of crystallized TiO2 coatings prepared by sol-gel process. Materials 6(7), 2819–2830 (2013)

    ADS  Google Scholar 

  • Wang, D.-L., Cui, H.-J., Hou, G.-J., Zhu, Z.-G., Yan, Q.-B., Su, G.: Highly efficient light management for perovskite solar cells. Sci. Rep. 6(1), 1–10 (2016)

    Google Scholar 

  • Wang, B., Zhu, X., Li, S., Chen, M., Lu, H., Yang, Y.: Ag@ SiO2 core-shell nanoparticles embedded in a TiO2 mesoporous layer substantially improve the performance of perovskite solar cells. Nanomaterials 8(9), 701 (2018)

    ADS  Google Scholar 

  • Xiang, W., Pan, J., Chen, Q.: In situ formation of NiO x interlayer for efficient n–i–p inorganic perovskite solar cells. ACS Appl. Energy Mater. 3(6), 5977–5983 (2020)

    Google Scholar 

  • Xie, Z., et al.: Simulation study on improving efficiencies of perovskite solar cell: introducing nano textures on it. Optics Communications 410, 117–122 (2018)

    ADS  Google Scholar 

  • Yue, L., Yan, B., Attridge, M., Wang, Z.: Light absorption in perovskite solar cell: fundamentals and plasmonic enhancement of infrared band absorption. Sol. Energy 124, 143–152 (2016)

    ADS  Google Scholar 

  • Zardari, P., Rostami, A.: Construction of 1D perovskite nanowires by Urotropin passivation towards efficient and stable perovskite solar cell. Sol. Energy Mater. Sol. Cells 227, 111119 (2021)

    Google Scholar 

  • Zhu, Z., Chang, J.-L., Wu, R.-J.: Fast ozone detection by using a core–shell Au@TiO2 sensor at room temperature. Sens. Actuators, B Chem. 214, 56–62 (2015)

    Google Scholar 

Download references

Funding

The authors declare that no funding was received for this research work.

Author information

Authors and Affiliations

Authors

Contributions

IU Designed the novel model and performed the simulations. IU Writing of manuscripts. The simulation results and theory of simulation model. Results and discussions. MAH and AA Review the simulation models and the idea of simulation model. MSR, MAAA Review the final manuscript.

Corresponding author

Correspondence to Ihsan Ullah.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Hossain, M.A., Armghan, A. et al. The optoelectronic enhancement in perovskite solar cells using plasmonic metal-dielectric core-shell and nanorod nanoparticles. Opt Quant Electron 55, 1018 (2023). https://doi.org/10.1007/s11082-023-05252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05252-3

Keywords

Navigation