Skip to main content
Log in

A low complexity reconstruction approach for optical detection magnetic resonance based diamond NV color center magnetic field measurement

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Diamond Nitrogen vacancy (NV) color center-based weak magnetic field detection is a popular topic for quantum sensing. The primary method of NV color center magnetic field measurement is the optical detection magnetic resonance (ODMR) method, including three main steps laser polarization, microwave excitation, and fluorescence signal collection. Then the intensities of the fluorescence signals are outputted as an ODMR curve where the magnetic field parameters can be directly observed. However, microwave excitation requires using a large number of frequencies by scanning the frequencies in a specific range, resulting in high complexity and low efficiency. Less than 50% of the microwave excitations are useful, and the rest works barely help to measure. The reason is that only the resonance peaks contain the magnetic field information, so only the microwave frequencies around the resonance peaks need to be excited. Therefore, we consider exciting only a few frequency microwaves. This paper proposes a random frequency microwave excitation method based on the Lorentz function fitting reconstruction, referred to as the under-sampling reconstruction based ODMR (USR-ODMR). It only excites several microwave frequencies randomly to produce the ODMR curve. The main idea of USR-ODMR is to select proper frequencies from random frequencies by employing the constant false alarm rate-based threshold. At last, a diamond NV color center magnetometer is implemented and tested to obtain ODMR curves. Experimental results show that the USR-ODMR can accurately reconstruct the ODMR curves with much lower complexity than the traditional ODMR method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Bairamov, B.H., Toropov, V.V., Bairamov, F.B.: Resonance light scattering by optical phonons in diamond crystal with nitogen-vacancy centres. Semiconductors 54(11), 1395–1397 (2020)

    ADS  Google Scholar 

  • Barclay, P.E., Fu, K.-M.C., Santori, C., Faraon, A., Beausoleil, R.G.: Hybrid nanocavity resonant enhancement of color center emission in diamond. Phys. Rev. X 1(1), 011007 (2011)

    Google Scholar 

  • Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92(1), 015004 (2020)

    ADS  Google Scholar 

  • Bauch, E., Singh, S., Lee, J., Hart, C.A., Schloss, J.M., Turner, M.J., Barry, J.F., Pham, L.M., Bar-Gill, N., Yelin, S.F., Walsworth, R.L.: Decoherence of ensembles of nitrogen-vacancy centers in diamond. Phys. Rev. B 102(13), 134210 (2020)

    ADS  Google Scholar 

  • Broadway, D.A., Johnson, B.C., Barson, M.S.J., Lillie, S.E., Dontschuk, N., McCloskey, D.J., Tsai, A., Teraji, T., Simpson, D.A., Stacey, A., McCallum, J.C., Bradby, J.E., Doherty, M.W., Hollenberg, L.C.L., Tetienne, J.-P.: Microscopic imaging of the stress tensor in diamond using in situ quantum sensors. Nano Lett. 19(7), 4543–4550 (2019)

    ADS  Google Scholar 

  • Chatzidrosos, G., Wickenbrock, A., Bougas, L., Leefer, N., Wu, T., Jensen, K., Dumeige, Y., Budker, D.: Miniature cavity-enhanced diamond magnetometer. Phys. Rev. Appl. 8(4), 044019 (2017)

    ADS  Google Scholar 

  • Chen, Y.-L., Tang, J., Guo, H., Gao, Y.-J., Liu, Y.-S., Shi, Z.-R., Liu, J.: Wide-field planar magnetic imaging using spins in diamond. IEEE Trans. Nanotechnol. 18, 1156–1159 (2019)

    ADS  Google Scholar 

  • Chen, B., Hou, X., Ge, F., Zhang, X., Ji, Y., Li, H., Qian, P., Wang, Y., Xu, N., Du, J.: Calibration-free vector magnetometry using nitrogen-vacancy center in diamond integrated with optical vortex beam. Nano Lett. 20(11), 8267–8272 (2020)

    ADS  Google Scholar 

  • Conte, E., De Maio, A., Galdi, C.: Signal detection in compound-Gaussian noise: Neyman-Pearson and CFAR detectors. IEEE Trans. Signal Process. 48(2), 419–428 (2000)

    ADS  Google Scholar 

  • Deák, P., Aradi, B., Kaviani, M., Frauenheim, T., Gali, A.: Formation of NV centers in diamond: a theoretical study based on calculated transitions and migration of nitrogen and vacancy related defects. Phys. Rev. B 89(7), 075203 (2014)

    ADS  Google Scholar 

  • Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.L.: The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528(1), 1–45 (2013)

    ADS  Google Scholar 

  • Dumeige, Y., Roch, J.-F., Bretenaker, F., Debuisschert, T., Acosta, V., Becher, C., Chatzidrosos, G., Wickenbrock, A., Bougas, L., Wilzewski, A., Budker, D.: Infrared laser threshold magnetometry with a NV doped diamond intracavity etalon. Opt. Express 27(2), 1706–1717 (2019)

    ADS  Google Scholar 

  • Dushenko, S., Ambal, K., McMichael, R.D.: Sequential Bayesian experiment design for optically detected magnetic resonance of nitrogen-vacancy centers. Phys. Rev. Appl. 14(5), 054036 (2020)

    ADS  Google Scholar 

  • Eichhorn, T.R., McLellan, C.A., Bleszynski Jayich, A.C.: Optimizing the formation of depth-confined Nitrogen vacancy center spin ensembles in diamond for quantum sensing. Phys. Rev. Mater. 3(11), 113802 (2019)

    Google Scholar 

  • Feng, J., Gan, W.S.: Active noise compression systems. Circuits Syst. Signal Process 17, 667–682 (1998)

    MATH  Google Scholar 

  • Fu, K.-M.C., Santori, C., Barclay, P.E., Rogers, L.J., Manson, N.B., Beausoleil, R.G.: Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103(25), 256404 (2009)

    ADS  Google Scholar 

  • Fujiwara, M., Shikano, Y.: Diamond quantum thermometry: from foundations to applications. Nanotechnology 32(48), 482002 (2021)

    Google Scholar 

  • Hayashi, K., Matsuzaki, Y., Taniguchi, T., Shimo-Oka, T., Nakamura, I., Onoda, S., Ohshima, T., Morishita, H., Fujiwara, M., Saito, S., Mizuochi, N.: Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble. Phys. Rev. Appl. 10(3), 034009 (2018)

    ADS  Google Scholar 

  • Huang, K., Yang, Z.: Robust sparse Bayesian learning for sparse signal recovery under unknown noise distributions. Circuits Syst. Signal Process 40, 1365–1382 (2021)

    Google Scholar 

  • Jelezko, F., Wrachtrup, J.: Single defect centres in diamond: a review. Phys. Status Solidi A 203, 3207–3225 (2006)

    ADS  Google Scholar 

  • Kumar, S., Jha, R.K.: Noise-induced resonance and particle swarm optimization-based weak signal detection. Circuits Syst. Signal Process 38, 2677–2702 (2019)

    Google Scholar 

  • Li, Z.-H., Wang, T.-Y., Guo, Q., Guo, H., Wen, H.-F., Tang, J., Liu, J.: Enhancement of magnetic detection by ensemble NV color center based on magnetic flux concentration effect. Acta Physica Sinica 70(14), 147601 (2021a)

    Google Scholar 

  • Li, F., Li, T., Scully, M.O., Agarwal, G.S.: Quantum advantage with seeded squeezed light for absorption measurement. Phys. Rev. Appl. 15(4), 044030 (2021b)

    ADS  Google Scholar 

  • Lin, S., Wang, Q., Guo, H., Wen, H., Li, Z., Tang, J., Ma, Z., Liu, J.: Research on the common mode suppression method of temperature noise in an NV color center spin magnetometer. Laser Phys. Lett. 18(11), 115201 (2021)

    ADS  Google Scholar 

  • Liu, D., Luo, S., Zhu, Z., Chen, P.: Adaptive sweep excitation of optical detection magnetic resonance method for measuring magnetic field in diamond NV center. In: 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 28–33 (2021)

  • Prananto, D., Kikuchi, D., Hayashi, K., Kainuma, Y., An, T.: Imaging of stray magnetic field vectors from a magnetic particle with an ensemble of Nitrogen-vacancy centers in diamond. Jpn. J. Appl. Phys. 58(SI), SIIB20 (2019)

    Google Scholar 

  • Robledo, L., Bernien, H., Sar, T.V.D., Hanson, R.: Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond. New J. Phys. 13(2), 025013 (2011)

    ADS  Google Scholar 

  • Rondin, L., Tetienne, J.-P., Hingant, T., Roch, J.-F., Maletinsky, P., Jacques, V.: Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77(5), 056503 (2014)

    ADS  Google Scholar 

  • Saijo, S., Matsuzaki, Y., Saito, S., Yamaguchi, T., Hanano, I., Watanabe, H., Mizuochi, N., Ishi-Hayase, J.: AC magnetic field sensing using continuous-wave optically detected magnetic resonance of Nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 113(8), 082405 (2018)

    ADS  Google Scholar 

  • Simanovskaia, M., Jensen, K., Jarmola, A., Aulenbacher, K., Manson, N., Budker, D.: Sidebands in optically detected magnetic resonance signals of nitrogen vacancy centers in diamond. Phys. Rev. B 87(22), 224106 (2013)

    ADS  Google Scholar 

  • Tetienne, J.-P., Dontschuk, N., Broadway, D.A., Lillie, S.E., Teraji, T., Simpson, D.A., Stacey, A., Hollenberg, L.C.L.: Apparent delocalization of the current density in metallic wires observed with diamond nitrogen-vacancy magnetometry. Phys. Rev. B 99(1), 014436 (2019)

    ADS  Google Scholar 

  • Uchiyama, H., Kishimoto, S., Ishi-Hayase, J., Ohno, Y.: Effect of metal electrodes on optically detected magnetic resonance of Nitrogen vacancy centers in diamond. Jpn. J. Appl. Phys. 59(12), 122002 (2020)

    ADS  Google Scholar 

  • Wang, J.-F., Liu, Z.-H., Yan, F.-F., Li, Q., Yang, X.-G., Guo, L., Zhou, X., Huang, W., Xu, J.-S., Li, C.-F., Guo, G.-C.: Experimental optical properties of single Nitrogen vacancy centers in Silicon carbide at room temperature. ACS Photonics 7, 1611–1616 (2020)

    Google Scholar 

  • Wang, Q.-Q., Wang, R.-R., Liu, J.-P., Lin, S.-Z., Wu, L.-W., et al.: Single-channel vector magnetic information detection method based on diamond NV color center. Chin. Phys. B 30(8), 080701 (2021)

    ADS  Google Scholar 

  • Wang, X., Zheng, D., Wang, X., Liu, X., Wang, Q., Zhao, J., Guo, H., Qin, L., Tang, J., Ma, Z., Liu, J.: Portable diamond NV magnetometer head integrated with 520 nm diode laser. IEEE Sens. J. 22(6), 5580–5587 (2022)

    ADS  Google Scholar 

  • Yahata, K., Matsuzaki, Y., Saito, S., Watanabe, H., Ishi-Hayase, J.: Demonstration of vector magnetic field sensing by simultaneous control of Nitrogen-vacancy centers in diamond using multi-frequency microwave pulses. Appl. Phys. Lett. 114(2), 022404 (2019)

    ADS  Google Scholar 

  • Ye, J.-F., Jiao, Z., Ma, K., Huang, Z.-Y., Lv, H.-J., Jiang, F.-J.: Reconstruction of vector static magnetic field by different axial NV centers using continuous wave optically detected magnetic resonance in diamond. Chin. Phys. B 28(4), 047601 (2019)

    ADS  Google Scholar 

  • Zhang, C., Yuan, H., Zhang, N., Xu, L., Zhang, J., Li, B., Fang, J.: Vector magnetometer based on synchronous manipulation of Nitrogen-vacancy centers in all crystal directions. J. Phys. D Appl. Phys. 51(15), 155102 (2018)

    ADS  Google Scholar 

  • Zhang, Y., Li, Z., Feng, Y., Guo, H., Wen, H., Tang, J., Liu, J.: High-sensitivity DC magnetic field detection with ensemble NV centers by pulsed quantum filtering technology. Opt. Express 28(11), 16191–16201 (2020)

    ADS  Google Scholar 

  • Zhang, C., Shagieva, F., Widmann, M., Kübler, M., Vorobyov, V., Kapitanova, P., Nenasheva, E., Corkill, R., Rhrle, O., Nakamura, K., Sumiya, H., Onoda, S., Isoya, J., Wrachtrup, J.: Diamond magnetometry and gradiometry towards subpicotesla DC field measurement. Phys. Rev. Appl. 15(6), 064075 (2021)

    ADS  Google Scholar 

  • Zhang, T., Pramanik, G., Zhang, K., Gulka, M., Wang, L., Jing, J., Xu, F., Li, Z., Wei, Q., Cigler, P., Chu, Z.: Toward quantitative bio-sensing with Nitrogen-vacancy center in diamond. ACS Sens. 6(6), 2077–2107 (2021)

    Google Scholar 

  • Zhao, P.-J., Kong, F., Li, R., Shi, F.-Z., Du, J.-F.: Nanoscale zero-field detection based on single solid-state spins in diamond. Acta Physica Sinica 70(21), 213301 (2021)

    Google Scholar 

Download references

Funding

This work was supported by [National Natural Science Foundation of China (NSFC)] (Grant Numbers [61701079], [61601088] and [61871097]), [Sichuan Provincial Science and Technology Plan] (Grant Number [2021YJ0090]), [Sichuan Science and Technology Program] (Grant Number [2023YFG0298]), [Chengdu Science and Technology Program] (Grant Number [2019-YF08-00248-GX]), and [Fundamental Research Funds for the Central Universities] (Grant Number [ZYGX2019J085]).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SL; Methodology: SL; Formal analysis and investigation: SL, ZZ; Data curation: ZZ, LZ; Software: ZZ; Validation: LZ; Visualization: SL, ZZ; Writing—original draft preparation: SL, ZZ; Writing—review and editing: LZ, PC; Funding acquisition: PC, RL; Resources: SL, PC, RL; Supervision: PC.

Corresponding author

Correspondence to Shan Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Zhu, Z., Zhang, L. et al. A low complexity reconstruction approach for optical detection magnetic resonance based diamond NV color center magnetic field measurement. Opt Quant Electron 55, 1004 (2023). https://doi.org/10.1007/s11082-023-05250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05250-5

Keywords

Navigation