Skip to main content
Log in

Depreciative behavior of nanotwinning towards emission in Ag doped CdS QDs

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Microstructural defects play a critical role in flourishing various properties of materials. Here in this article, the effect of Ag substitution on the various properties of CdS quantum dots (QDs) is studied. Ag doped CdS QDs are synthesized using chemical co-precipitation, a simple, cost-effective method suitable for mass-production. High resolution transmission electron microscopy (HRTEM) images show dopant induced change in density and types of microstructural defects. The development of multiple nanotwinning at the cost of stacking faults as well as single twin boundary via the substitution of Ag in CdS lattice is noticed. In present study, a strong quantum confinement is observed and confirmed by the crystallite sizes estimated via X-ray diffraction (XRD) and TEM studies. A systematic enhancement in the bandgap and reduction in crystallite size are observed with increasing concentration of dopant. The atomic concentration of element and chemical bonding in CdS QDs are studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) respectively. Unlike other elemental dopants, QDs when doped with Ag with the varying concentration exhibit a non-systematic emission behaviour with increasing concentration which is correlated to the microstructural defects and confinement strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available on genuine request.

References

  • Abdolahzadeh Ziabari, A., Ghodsi, F.E.: Influence of Cu doping and post-heat treatment on the microstructure, optical properties and photoluminescence features of sol–gel derived nanostructured CdS thin films. J Lumin 141, 121–129 (2013)

    Google Scholar 

  • Bol, A.A., Beek, R., Meijerink, A.: On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals. Chem. Mater. 14, 1121–1126 (2002)

    Google Scholar 

  • Butwong, N., Srijaranai, S., Luong, J.H.T.: Fluorometric determination of hydrogen sulfide via silver-doped CdS quantum dots in solution and in a test strip. Microchim. Acta 183(3), 1243–1249 (2016)

    Google Scholar 

  • Debnath, R., Xie, T., Wen, B., Li, W., Ha, J.Y., Sullivan, N.F., Nguyen, N.V., Motayed, A.: A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector. RSC Adv. 5(19), 14646–14652 (2015)

    ADS  Google Scholar 

  • Dey, P.C., Das, R.: Photoluminescence quenching in ligand free CdS nanocrystals due to silver doping along with two high energy surface states emission. J. Lumin. 183, 368–376 (2017)

    Google Scholar 

  • Dey, P.C., Das, R.: Effect of silver doping on the elastic properties of CdS nanoparticles. Indian J. Phys. 92(9), 1099–1108 (2018)

    ADS  Google Scholar 

  • Gondal, M.A., Dastageer, M.A.: Spectral red shift in the Ag2+ doped CdS quantum dots. Appl. Phys. B 106(2), 419–424 (2011)

    ADS  Google Scholar 

  • Iqbal, T., Ara, G., Khalid, N.R., Ijaz, M.: Simple synthesis of Ag-doped CdS nanostructure material with excellent properties. Appl. Nanosci. 10(1), 23–28 (2019)

    ADS  Google Scholar 

  • Jay Chithra, M., Sathya, M., Pushpanathan, K.: Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall Sin Engl Lett 28(3), 394–404 (2015)

    Google Scholar 

  • Kalsi, T., Kumar, P.: High performance NIR photodetector based on Cd(1–x)CuxS colloidal quantum dots thin films. J. Phys. Chem. Solids 179, 111377 (2023)

    Google Scholar 

  • Kalsi, T., Mitra, H., Roy, T.K., Godara, S.K., Kumar, P.: Comprehensive analysis of band gap and nanotwinning in Cd1–xMgxS QDs. Cryst. Growth Des. 20(10), 6699–6706 (2020)

    Google Scholar 

  • Kalsi, T., Godara, S.K., Medwal, R., Kumar, P.: Dopant mediated augmentation of nanotwinning and anomalous emission behaviour. J. Lumin. 255, 119544 (2023)

    Google Scholar 

  • Kumar, P.: Applications of quantum dots in light-emitting devices. In: Kalyani, N.T., Dhoble, S.J., Michalska-Domanska, M., Vengadaesvaran, B., Nagabhushana, H., Arof, A.K. (eds.) Quantum Dots: Emerging Materials for Versatile Applications, pp. 305–333. Elsevier, Newyork (2023)

    Google Scholar 

  • Kumar, P., Unnikrishnan, L.: Pyroelectric and Piezoelectric Polymers. In Polymers in Energy Conversion and Storage. CRC Press, USA (2022)

    Google Scholar 

  • Kumar, P., Saxena, N., Singh, F., Agarwal, A.: Nanotwinning in CdS quantum dots. Physica B 407(17), 3347–3351 (2012)

    ADS  Google Scholar 

  • Kumar, P., Saxena, N., Gupta, V., Gao, K., Singh, F., Agarwal, A.: Effect of swift heavy ions on pulsed laser deposited Ag doped CdS nanocrystalline thin films. Adv. Sci. Lett. 20(5), 977–983 (2014)

    Google Scholar 

  • Kumar, P., Saxena, N., Dewan, S., Singh, F., Gupta, V.: Giant UV-sensitivity of ion beam irradiated nanocrystalline CdS thin films. RSC Adv. 6(5), 3642–3649 (2016)

    ADS  Google Scholar 

  • Kumar, P., Saxena, N., Singh, F., Gupta, V.: Ion beam assisted fortification of photoconduction and photosensitivity. Sens. Actuators, A 279, 343–350 (2018)

    Google Scholar 

  • Kumar, M., Park, J.Y., Seo, H.: High-performance and self-powered alternating current ultraviolet photodetector for digital communication. ACS Appl Mater Interfaces 13(10), 12241–12249 (2021)

    Google Scholar 

  • Kumar, P., Saxena, N., Agarwal, A., Gupta, V. (2015). Influence of Ag doping concentration on structural and optical properties of CdS thin film. In AIP Conference Proceedings. AIP Publishing.

  • Lan, Y., Minnich, A.J., Chen, G., Ren, Z.: Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Func. Mater. 20(3), 357–376 (2010)

    Google Scholar 

  • Lang, D., Xiang, Q., Qiu, G., Feng, X., Liu, F.: Effects of crystalline phase and morphology on the visible light photocatalytic H(2)-production activity of CdS nanocrystals. Dalton Trans 43(19), 7245–7253 (2014)

    Google Scholar 

  • Liu, S.-M., Liu, F.-Q., Guo, H.-Q., Zhang, Zhi-Hua., Wang, Z.-G.: Surface states induced photoluminescence from Mn2+ doped CdS nanoparticles. Solid State Commun 115, 615–618 (2000)

    ADS  Google Scholar 

  • Liu, P., Singh, S., Guo, Y., Wang, J.J., Xu, H., Silien, C., Liu, N., Ryan, K.M.: Assembling ordered nanorod superstructures and their application as microcavity lasers. Sci. Rep. 7, 43884 (2017a)

    ADS  Google Scholar 

  • Liu, Z., Wang, Y., Gao, W., Mao, J., Geng, H., Shuai, J., Cai, W., Sui, J., Ren, Z.: The influence of doping sites on achieving higher thermoelectric performance for nanostructured α-MgAgSb. Nano Energy 31, 194–200 (2017b)

    Google Scholar 

  • Ma, J., Tai, G., Guo, W.: Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles. Ultrason Sonochem 17(3), 534–540 (2010)

    Google Scholar 

  • Mao, J., Wang, Y., Kim, H.S., Liu, Z., Saparamadu, U., Tian, F., Dahal, K., Sun, J., Chen, S., Liu, W.: High thermoelectric power factor in Cu–Ni alloy originate from potential barrier scattering of twin boundaries. Nano Energy 17, 279–289 (2015)

    Google Scholar 

  • Mehmood, I., Huang, J., Khan, S.A., Shah, A.H., Khan, Q.U., Kiani, M., Li, G.: Investigation of silver doped CdS co-sensitized TiO2/CISe/Ag–CdS heterostructure for improved optoelectronic properties. Opt Mater 111, 110645 (2021)

    Google Scholar 

  • Muraleedharan, K., Rajan, V.K., Abdul Mujeeb, V.M.: Green synthesis of pure and doped semiconductor nanoparticles of ZnS and CdS. Trans Nonferrous Metals Soc Chin 25(10), 3265–3270 (2015)

    Google Scholar 

  • Najm, A.S., Aljuhani, A., Naeem, H.S., Sopian, K., Ismail, R.A., Holi, A.M., Sabri, L.S., Abdullah Al-Zahrani, A., Rasheed, R.T., Moria, H.: Mechanism and principle of doping: realizing of silver incorporation in CdS thin film via doping concentration effect. RSC Adv 12(46), 29613–29626 (2022)

    ADS  Google Scholar 

  • Nazir, A., Toma, A., Shah, N.A., Panaro, S., Butt, S., Sagar, R.U.R., Raja, W., Rasool, K., Maqsood, A.: Effect of Ag doping on opto-electrical properties of CdS thin films for solar cell applications. J Alloys Compd 609, 40–45 (2014)

    Google Scholar 

  • Pon, V.D., Wilson, K.J., Hariprasad, K., Ganesh, V., Ali, H.E., Algarni, H., Yahia, I.S.: Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications. Superlattices Microstruct 151, 106790 (2021)

    Google Scholar 

  • Prakash, J., Kumar, P., Saxena, N., Pu, Z., Chen, Z., Tyagi, A., Zhang, G., Sun, S.: CdS based 3D nano/micro-architectures: formation mechanism, tailoring of visible light activities and emerging applications in photocatalytic H2 production, CO2 reduction and organic pollutant degradation. J Mater Chem A (2023). https://doi.org/10.1039/D3TA00396E

    Article  Google Scholar 

  • Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Prog. Photovoltaics Res. Appl. 16(3), 235–239 (2008)

    Google Scholar 

  • Saito, K., Nissen, H.-U., Beeli, C., Wolf, T., Schauer, W., KuÈpfer, H.: Influence of Sr doping on twin-wall structure and flux pinning of YBa2Cu3O7-single crystals. Phys. Rev. b. 58(10), 6645–6649 (1998)

    ADS  Google Scholar 

  • Sakthivel, P., Kumar, P., Dhavamurthy, M., Thirumurugan, A., Sridhar, S.: Structural, morphological, optical, photoluminescent and electrochemical performance of ZnS quantum dots: Influence of Mn2+ and La3+ ions. J Mole Struct 1288, 135723 (2023)

    Google Scholar 

  • Saxena, N., Kumar, P., Gupta, V.: CdS: SiO2 nanocomposite as a luminescence-based wide range temperature sensor. RSC Adv. 5(90), 73545–73551 (2015)

    ADS  Google Scholar 

  • Saxena, N., Kumar, P., Gupta, V.: CdS nanodroplets over silica microballs for efficient room-temperature LPG detection. Nanoscale Adv 1(6), 2382–2391 (2019)

    ADS  Google Scholar 

  • Saxena, N., Kalsi, T., Kumar, P.: CdS-based photodetectors for visible-UV spectral region. In: Korotcenkov, G. (ed.) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors Materials Technologies and Light Detectors, vol. 1, pp. 251–279. Springer, Newyork (2023)

    Google Scholar 

  • Scalbi, S., Fantin, V., Antolini, F.: Environmental assessment of new technologies: production of a quantum dots-light emitting diode. J. Clean. Prod. 142, 3702–3718 (2017)

    Google Scholar 

  • Shah, N.A., Nazir, A., Mahmood, W., Syed, W.A.A., Butt, S., Ali, Z., Maqsood, A.: Physical properties and characterization of Ag doped CdS thin films. J. Alloy. Compd. 512(1), 27–32 (2012)

    Google Scholar 

  • Singh, V., Sharma, P.K., Chauhan, P.: Synthesis of CdS nanoparticles with enhanced optical properties. Mater. Charact. 62(1), 43–52 (2011)

    Google Scholar 

  • Singh, R., Basu, S., Pal, B.: Ag + and Cu 2+ doped CdS nanorods with tunable band structure and superior photocatalytic activity under sunlight. Mater. Res. Bull. 94, 279–286 (2017a)

    Google Scholar 

  • Singh, B., Singh, J., Kaur, R., Moudgil, R.K., Tripathi, S.K.: Quantitative measurement of transport properties: Ag-doped nanocrystalline CdS thin films. RSC Adv. 7(85), 53951–53962 (2017b)

    ADS  Google Scholar 

  • Singh, S., Khan, Z.H., Khan, M.B., Kumar, P., Kumar, P.: Quantum dots-sensitized solar cells: a review on strategic developments. Bull Mater Sci 45(2), 81 (2022)

    Google Scholar 

  • Singh, S., Kumar, V., Tyagi, S., Saxena, N., Khan, Z.H., Kumar, P.: Room temperature ferromagnetism in metal oxides for spintronics: a comprehensive review. Opt. Quant. Electron. 55(2), 123 (2022b)

    Google Scholar 

  • Singh, N., Prajapati, S., Prateek, R.K. Gupta.: Investigation of Ag doping and ligand engineering on green synthesized CdS quantum dots for tuning their optical properties. Nanofabrication 7, 89–103 (2022)

    Google Scholar 

  • Szpunar, B.: The influence of deformation twin boundaries and doping on the electronic structure of CaCuO2. Phys C Supercond Appl 193(1–2), 55–62 (1992)

    ADS  Google Scholar 

  • Veerathangam, K., Pandian, M.S., Ramasamy, P.: Photovoltaic performance of Ag-doped CdS quantum dots for solar cell application. Mater Res Bull 94, 371–377 (2017)

    Google Scholar 

  • Wang, J., Zhao, W.W., Li, X.R., Xu, J.J., Chen, H.Y.: Potassium-doped graphene enhanced electrochemiluminescence of SiO(2)@CdS nanocomposites for sensitive detection of TATA-binding protein. Chem Commun (camb) 48, 6429–6431 (2012)

    Google Scholar 

  • Wang, S.-B., Hsiao, C.-H., Chang, S.-J., Jiao, Z.Y., Young, S.-J., Hung, S.-C., Huang, B.-R.: ZnO branched nanowires and the p-CuO/n-ZnO heterojunction nanostructured photodetector. IEEE Trans. Nanotechnol. 12(2), 263–269 (2013)

    ADS  Google Scholar 

  • Wang, H., Ma, J., Zhang, J., Feng, Y., Vijjapu, M.T., Yuvaraja, S., Surya, S.G., Salama, K.N., Dong, C., Wang, Y., Kuang, Q., Tshabalala, Z.P., Motaung, D.E., Liu, X., Yang, J., Fu, H., Yang, X., An, X., Zhou, S., Zi, B., Liu, Q., Urso, M., Zhang, B., Akande, A.A., Prasad, A.K., Hung, C.M., Van Duy, N., Hoa, N.D., Wu, K., Zhang, C., Kumar, R., Kumar, M., Kim, Y., Wu, J., Wu, Z., Yang, X., Vanalakar, S.A., Luo, J., Kan, H., Li, M., Jang, H.W., Orlandi, M.O., Mirzaei, A., Kim, H.W., Kim, S.S., Uddin, A., Wang, J., Xia, Y., Wongchoosuk, C., Nag, A., Mukhopadhyay, S., Saxena, N., Kumar, P., Do, J.S., Lee, J.H., Hong, S., Jeong, Y., Jung, G., Shin, W., Park, J., Bruzzi, M., Zhu, C., Gerald, R.E., 2nd., Huang, J.: Gas sensing materials roadmap. J Phys Condens Matter 33(30), 303001 (2021)

    Google Scholar 

  • Woo, R.L., Xiao, R., Kobayashi, Y., Gao, L., Goel, N., Hudait, M.K., Mallouk, T.E., Hicks, R.F.: Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111). Nano Lett 8(12), 4664–4669 (2008)

    ADS  Google Scholar 

  • Zhang, T.-L., Xia, Y.-S., Diao, X.-L., Zhu, C.-Q.: Preparation and formation mechanism of strong violet luminescent CdS quantum dots by using a ligand exchange strategy. J. Nanopart. Res. 10(1), 59–67 (2007)

    Google Scholar 

  • Zhao, P.Q., Xiong, S.J., Wu, X.L., Chu, P.K.: Photoluminescence induced by twinning interface in CdS nanocrystals. Appl Phys Lett 100(17), 171911 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

The author (PK) is pleased to acknowledge the Inter University Accelerator Centre, New Delhi, India, University Grants Commission (UGC), New Delhi, India and Central University of Jammu for providing financial assistance under the project IUAC/XIII.7/UFR-61310, UGC-Startup grant (No. F.30-352/2017(BSR)) and CUJ/Acad/Proj-PHY/2017/98 respectively. The author (TK) is thankful to the University Grants Commission (UGC), New Delhi, India for providing scholarship under NF-OBC scheme (NFO-2018-19-OBC-JAM-69666), Junior Research Fellowship (JRF) scheme. The authors are also thankful to Mr. Ambuj Misra from Inter University Accelerator Centre (IUAC) for providing kind support in TEM measurements.

Funding

The corresponding author Pragati Kumar received financial supports from Inter University Accelerator Centre, New Delhi, India, University Grants Commission (UGC), New Delhi, India and Central University of Jammu under the project IUAC/XIII.7/UFR-61310, UGC-Startup grant (No. F.30–352/2017(BSR)) and CUJ/Acad/Proj-PHY/2017/98 respectively. The first author Tania Kalsi received fellowship from the University Grants Commission (UGC), New Delhi, India under NF-OBC scheme (NFO-2018–19-OBC-JAM-69666), Junior Research Fellowship (JRF) scheme.

Author information

Authors and Affiliations

Authors

Contributions

First Author: TK executed the experiments, analysed data and wrote the first draft of manuscript. Co-author: PS review and edited the first draft of manuscript. Co-author: SKG performed UV–Visible and PL measurement and provided help during analysis. Co-author: RM performed XPS measurement and helped in analysis. Corresponding Author: PK conceptualized the problem, supervised the first author during experiments and analysis, review and write the final draft of paper. Corresponding Author: NS conceptualized the problem, formally analysed data, review and write the final draft of manuscript.

Corresponding authors

Correspondence to Nupur Sxaena or Pragati Kumar.

Ethics declarations

Competing interests

On behalf of all author corresponding author Dr. Pragati Kumar is stating that there is no conflict of interest including a financial or personal nature.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalsi, T., Sakthivel, P., Godara, S.K. et al. Depreciative behavior of nanotwinning towards emission in Ag doped CdS QDs. Opt Quant Electron 55, 996 (2023). https://doi.org/10.1007/s11082-023-05248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05248-z

Keywords

Navigation