Skip to main content
Log in

Quantum coherence-assisted secure communication of internet of things information via Landau-quantized graphene

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the current scenario of information explosion, one of the growing concerns of scientists worldwide is to manage the information storage and transmission by realizing the novel and reliable means of secure communication of data and information. This is essential to avoid any threat of the breaching of secret information on the part of hackers during the communication. In this regard, in contrast to routine classical methods, state-of-the-art robust quantum methods of secure communication such as quantum cryptography and Internet of Things (IoTs) information via quantum coherence medium and quantum networking of IoTs are gaining immense interest. In this context, chiral atomic medium and 2D materials such as graphene have attracted tremendous research interest. This owes to their remarkable linear and nonlinear ultrafast response and tunable structural and optoelectronic properties, which have potential applications in quantum computing, quantum information processing, information storage, and secure communication of IoTs information. In this paper, we explore the potential of Landau-quantized graphene (LQG) for secure communication of IoTs information by investigating quantum coherence-based propagation of light and optical properties of LQG. We report on the tunable optical response of a newly-proposed four-level ladder-type LQG subject to a weak probe field in conjunction with two strong control fields. In particular, employing the density-matrix approach, we report on theoretical analysis of superluminal/subluminal and absorption-free light propagation via quantum coherence in view of tunable electromagnetically induced transparency. Based on the tunable optical response of LQG, we propose a quantum networking model for the secure communication  of quantum information via IoTs quantum networking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and materials availability

The data can be acquired on a reasonable request from the author.

References

  • Abergel, D.S.L., Falko, V.I.: Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75, 155430 (2007)

    ADS  Google Scholar 

  • Arif, S.M., Bacha, B.A., Ullah, S.S., et al.: Tunable control of internet of things information hacking by application of the induced chiral atomic medium. Soft Comput. (2022)

  • Asadpour, S.H., Soleimani, H.R.: Phase dependence of optical bistability and multistability in graphene nanostructure under external magnetic field. Laser Phys. Lett. 13, 015204 (2016)

    ADS  Google Scholar 

  • Bacha, B.A., Rahmanb, A.U., Iqbal, A., Khan, N.: Implications of spectral hole burning on the manipulation of spatial Goos–Hänchen shift in an atomic cell. Phys. Lett. A 383, 781–788 (2019)

    ADS  MATH  Google Scholar 

  • Bashir, A.I.: Role of intense laser-excited dressed states via electromagnetically induced transparency on the Fresnel-Fizeau photon drag through an asymmetric double quantum dot molecule (GaAs/AlGaAs)in the \(\Lambda\)-type configuration. Physica E 134, 114904 (2021)

    Google Scholar 

  • Bashir, A.I., Zahir, A., Khan, N., Hayat, S.S.: Controlling optical properties and drag of photon and surface plasmon polaritons in triple quantum dot molecules and dots-metal plasmonic interface via tunneling-assisted quantum coherence. Opt. Laser Technol. 149, 107915 (2022)

    Google Scholar 

  • Bejan, D.: Electromagnetically induced transparency in double quantum dot under intense laser and magnetic fields: from \(\Xi\) to \(\Lambda\) configuration. Eur. Phys. J. B 90(54), 1–12 (2017)

    Google Scholar 

  • Bo, F., Sun, J., Wang, C., Shang, C., Lijun, X., Li, J., Zhang, H.: MXenes: synthesis, optical properties, and applications in ultrafast photonics. Small 17, 2006054 (2021)

    Google Scholar 

  • Chen, Z.-G., et al.: Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. Nat. Commun. 5, 4461 (2014)

    ADS  Google Scholar 

  • Chen, A., Ilan, R., de Juan, F., Pikulin, D.I., Franz, M.: Quantum holography in a graphene flake with an irregular boundary. Phys. Rev. Lett. 121, 036403 (2018)

    ADS  Google Scholar 

  • Ding, C., Rong, Yu., Hao, X., Zhang, D.: Controllable population dynamics in Landau-quantized graphene. Sc. Rep. 8, 1530 (2018)

    ADS  Google Scholar 

  • Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165–171 (2007)

    ADS  Google Scholar 

  • Gu, T., et al.: Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photon. 6, 554 (2012)

    ADS  Google Scholar 

  • Ham, B.S., Hemmer, P.R., Kim, M.K., Shahriar, S.M.: Quantum interference and its potential applications in a spectral hole-burning solid. Laser Phys. 9(4), 788–796 (1999)

    Google Scholar 

  • Hendry, E., Hale, P.J., Moger, J., Savchenko, A.K., Mikhailov, S.A.: Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010)

    ADS  Google Scholar 

  • Huang, X., et al.: Graphene oxide dielectric permittivity at GHz and its applications for wireless humidity sensing. Sci. Rep. 8, 43 (2018)

    ADS  Google Scholar 

  • Iqbal, A., Khan, N., Bacha, B.A., Rahman, A.U., Ahmad, A.: Photon drag enhancement by a slow-light moving medium via electromagnetically-induced transparency amplification. Phys. Lett. 381, 3134 (2017)

    Google Scholar 

  • Jamshidnejad, M., Asadi A.E., Miraboutalebi, S., Hossein A.S.: Superluminal light propagation in a monolayer graphene system under external magnetic field. Opt. Int. J. Light Electr. Opt. 127(20) (2016)

  • Jhon, Y.I., Jhon, Y.M., Lee, J.H.: Broadband ultrafast photonics of two-dimensional transition metal carbides (MXenes). Nano Futures 4, 032003 (2020)

    ADS  Google Scholar 

  • Kazemi, S.H., Maleki, M.A., Mahmoudi, M.: Absorption-free superluminal light propagation in a Landau-quantized graphene. AIP Adv. 8, 075023 (2018)

    ADS  Google Scholar 

  • Khan, S., Bharti, V., Natarajan, V.: Role of dressed-state interference in electromagnetically induced transparency. Phys. Let. A 380(48), 4100–4104 (2016)

    ADS  Google Scholar 

  • Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008). https://doi.org/10.1038/nature07127

    Article  ADS  Google Scholar 

  • Kitano, M., Nakanishi, T., Sugiyama, K.: Negative group delay and superluminal propagation: an electronic circuit approach. IEEE J. Sel. Top. Quantum Electron. 9, 43 (2003)

    ADS  Google Scholar 

  • Kolner, B.H.: Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron. 30(8), 1951–1963 (1994)

    ADS  Google Scholar 

  • Leonhardt, U.: Optical conformal mapping. Science 312, 1777–1780 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Lin, F., Niu, C., Jonathan, H., Wang, Z., Bao, J., Diamagnetism, G.: Levitation, transport, rotation, and orientation alignment of graphene flakes in a magnetic field. IEEE Nanatechnol. Mag. 14, 14–22 (2020)

    Google Scholar 

  • Liu, A., Jiang, S., Zhu, Z., Zhang, S., Kang, D., Tao, L.: Emerging 2D Materials and Devices for the Internet of Things 2020, Prospects and challenges in low-dimensional materials and devices for Internet of things, pp 291–327

  • Lyu, W., An, J., Lin, Y., Qiu, P., Wang, G., Chao, J., Bo, F.: Fabrication and applications of heterostructure materials for broadband ultrafast photonics. Adv. Opt. Mater. 11, 2300124 (2023)

    Google Scholar 

  • Milne, D.F., Korolkova, N.: Electromagnetically induced invisibility cloaking. arXiv:1206.3944v1

  • Morimoto, T., Hatsugai, Y., Aoki, H.: Cyclotron radiation and emission in graphene—a possibility of Landau-level laser. J. Phys: Conf. Ser. 150, 022059 (2009)

    Google Scholar 

  • Nakanishi, T., Sugiyama, K., Kitano, M.: Demonstration of negative group delays in a simple electronic circuit. Am. J. Phys. 70, 1117–1121 (2002)

    ADS  Google Scholar 

  • Novoselov, K.S.: Nobel lecture: graphene: materials in the flatland. Rev. Mod. Phys. 83, 837 (2011)

    ADS  Google Scholar 

  • Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Raheli, A., Hamedi, H.R., Hamedi, M.: The optical properties of a weak probe field in a graphene ensemble under Raman excitation. Laser Phys. Lett. 13, 065202 (2016)

    ADS  Google Scholar 

  • Rastogi, T., Hassija, V., Saxena, V.: Quantum Communication: Concept, Applications, and Future Outlook, IC3’21: 2021 Thirteenth International Conference on Contemporary Computing IC3, pp. 51–56 (2021)

  • Sadowski, M.L., Martinez, G., Potemski, M., Berger, C., de Heer, W.A.: Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97, 266405 (2006)

    ADS  Google Scholar 

  • Sattar, A., Moazzam, U., Bashir, A.I., Reza, A., Latif, H., Usman, A., Amjad, R.J., Mubshrah, A., Nasir, A.: Proposal of graphene band-gap enhancement via heterostructure of graphene with boron nitride in vertical stacking scheme. Nanotechnology 32, 225705 (2021)

    ADS  Google Scholar 

  • Schaibley, J.R., Yu, H., Clark, G., Rivera, P., Ross, J.S., Seyler, K.L., Yao, W., Xu, X.: Valleytronics in 2D materials. Nat. Rev. Mater. 1(11), 16055 (2016)

    ADS  Google Scholar 

  • Solli, D., Chiao, R.Y., Hickmann, J.M.: Superluminal effects and negative group delays in electronics, and their applications. Phys. Rev. E 66, 056601 (2002)

    ADS  Google Scholar 

  • Sonntag, J., Kurzmann, A., Geller, M., Queisser, F., Lorke, A., Schützhold, R.: Giant magneto-photoelectric effect in suspended graphene. New J. Phys. 19, 063028 (2017)

    ADS  Google Scholar 

  • Stephen, E.: Harris, electromagnetically induced transparency. Phys. Today 50(7), 36 (1997)

    Google Scholar 

  • Tian, B., Lin, W., Zhuang, P., Li, J., Shih, T., Cai, W.: Magnetically-induced alignment of graphene via Landau diamagnetism. Carbon 131, 66–71 (2018)

    Google Scholar 

  • Tokman, M., Yao, X.H., Belyanin, A.: Generation of entangled photons in graphene in a strong magnetic field. Phys. Rev. Lett. 110, 077404 (2013)

    ADS  Google Scholar 

  • Wendler, F., Malic, E.: Towards a tunable graphene-based Landau level laser in the terahertz regime. Sci. Rep. 5, 12646 (2015)

    ADS  Google Scholar 

  • Wendler, F., Knorr, A., Malic, E.: Ultrafast carrier dynamics in Landau-quantized graphene. Nanophotonics 4, 224–249 (2015)

    Google Scholar 

  • Withayachumnankul, W., Fischer, B.M., Ferguson, B., Davis, B.R., Abbott, D.: Proceedings of the IEEE 98 (2010).https://doi.org/10.1109/jproc.2010.2052910

  • Zahir, A., Bashir, A.I., Sikander Hayat, S.: Quantum coherence-assisted optical properties and drag of SPPs on quantum dots and resonantly-coupled dots-metal plasmonic interfaces via interbands tunneling and Fano resonance. Opt. Mater. 126, 112227 (2022)

    Google Scholar 

  • Zhan, L., et al.: Time cloak based on slow/fast light effects in fiber Mach–Zehnder interferometers. In: Proceedings of the SPIE 10548, Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI, 1054812 (22 February 2018). https://doi.org/10.1117/12.2299198

  • Zhang, D., Rong, Yu., Ding, C., Huang, H., Sun, Z., Yang, X.: Phase control of optical bistability and multistability in closed-type Landau-quantized graphene. Laser Phys. Lett. 13, 125201 (2016)

    ADS  Google Scholar 

  • Zhao, X., Jin, H., Liu, J., Chao, J., Liu, T., Zhang, H., Wang, G., Lyu, W., Wageh, S., Al-Hartomy, O.A., Al-Sehemi, A.G., Bo, F., Zhang, H.: Integration and applications of nanomaterials for ultrafast photonics. Laser Photonics Rev. 16, 2200386 (2022)

    ADS  Google Scholar 

  • Zhu, J., Wu, C.: Optical refractive index sensor with Fano resonance based on original MIM waveguide structure. Results Phys. 21, 103858 (2021)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Azmat Iqbal Bashir.

Ethics declarations

Conflict of interest

The author has no known competing financial interests or personal conflict of interest that could have appeared to influence the work reported in this paper.

Ethical statement

A.I. Bashir (Ph.D.) declares that the work is not submitted to any other journal at this stage. The work is original and is not published elsewhere. The work is an expansion in view of previous and ongoing research in the field. The references to the earlier work by others are given as correctly as possible.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 3646 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, A.I. Quantum coherence-assisted secure communication of internet of things information via Landau-quantized graphene. Opt Quant Electron 55, 983 (2023). https://doi.org/10.1007/s11082-023-05240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05240-7

Keywords

Navigation