Skip to main content

Optical quantum modeling for Heisenberg ferromagnetic normalized phase

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, we focus recursional and normalized operator for timelike \(\tau \)-magnetic particles in Heisenberg deSitter Space \({\mathbb {H}}_{{\mathbb {S}}_{1}^{2}}\). Thus, we obtain Heisenberg normalized optical \(\nu \)-density for\(\mathcal {L}(\tau ),\) \( \mathcal {L}(\nu ),\) \(\mathcal {L}(\beta )\) with recursional operator. Also, we characterize Heisenberg normalized \(\nu \)-ferromagnetic total \( \mathcal {L}(\tau )\) phase. Moreover, we characterize \(\nu \)-photonic \( \mathcal {L}(\tau ),\) \(\mathcal {L}(\nu ),\) \(\mathcal {L}(\beta )\) crystal is presented by optical Heisenberg normalized inextensible shape in Heisenberg deSitter Space \({\mathbb {H}}_{{\mathbb {S}}_{1}^{2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Abdullah, F.A., Islam, M.T., Gómez-Aguilar, J.F., Akbar, M.A.: Impressive and innovative soliton shapes for nonlinear Konno–Oono system relating to electromagnetic field. Opt. Quant. Electron. 55(1), 69 (2023)

    Google Scholar 

  • Arbind, A., Reddy, J.N., Srinivasa, A.R.: A nonlinear 1-D finite element analysis of rods/tubes made of incompressible neo-Hookean materials using higher-order theory. Int. J. Solids Struct. 166, 1–21 (2019)

    Google Scholar 

  • Balakrishnan, R., Bishop, R.A., Dandoloff, R.: Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain. Phys. Rev. Lett. 64(18), 2107 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  • Cao, F.: Geometric Curve Evolution and Image Processing. Springer, Berlin (2003)

    MATH  Google Scholar 

  • Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New York (1976)

    MATH  Google Scholar 

  • Carollo, A., Valenti, D., Spagnolo, B.: Geometry of quantum phase transitions. Phys. Rep. 838, 1–72 (2020)

    MathSciNet  MATH  Google Scholar 

  • Cheng, S., Xia, T., Liu, M., Xu, S., Gao, S., Zhang, G., Tao, S.: Optical manipulation of microparticles with the momentum flux transverse to the optical axis. Opt. Laser Technol. 113, 266–272 (2019)

    ADS  Google Scholar 

  • Cohen, E., Larocque, H., Bouchard, F., Nejadsattari, F., Gefen, Y., Karimi, E.: Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1(7), 437–449 (2019)

    Google Scholar 

  • Conte, R., Musette, M.: Link between solitary waves and projective Riccati equations. J. Phys. A: Math. Gen. 25(21), 5609 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  • Gao, W., Ren, L.L., Liu, R.Q., Han, Y.C.: The role of geometric phase in dissociation dynamics of the molecule. Int. J. Quantum Chem. 121(22), e26787 (2021)

    Google Scholar 

  • Guerci, D., Simon, P., Mora, C.: Superradiant phase transition in electronic systems and emergent topological phases. Phys. Rev. Lett. 125(25), 257604 (2020)

    ADS  MathSciNet  Google Scholar 

  • Hirota, R.: Direct methods in soliton theory. In: Solitons, pp. 157–176. Springer, Berlin (1980)

  • Islam, M.T., Abdullah, F.A., Gómez-Aguilar, J.F.: A variety of solitons and other wave solutions of a nonlinear Schrödinger model relating to ultra-short pulses in optical fibers. Opt. Quant. Electron. 54(12), 866 (2022a)

    Google Scholar 

  • Islam, M.T., Akter, M.A., Gómez-Aguilar, J.F., Akbar, M.A., Torres-Jiménez, J.: A novel study of the nonlinear Kadomtsev–Petviashvili-modified equal width equation describing the behavior of solitons. Opt. Quant. Electron. 54(11), 725 (2022b)

    Google Scholar 

  • Islam, M.T., Akter, M.A., Gomez-Aguilar, J.F., Akbar, M.A., P érez-Careta, E.: Innovative and diverse soliton solutions of the dual core optical fiber nonlinear models via two competent techniques. Nonlinear Opt. Phys. Mater. 32, 2350037 (2023)

    Google Scholar 

  • Korpinar, Z.: Some analytical solutions by mapping methods for non-linear conformable time-fractional PHI-4 equation. Therm. Sci. 23(6), 1815 (2019)

    Google Scholar 

  • Körpinar, T.: A new optical Heisenberg ferromagnetic model for optical directional velocity magnetic flows with geometric phase. Indian J. Phys. 94(9), 1409–1421 (2020a)

    ADS  Google Scholar 

  • Körpinar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Opt. - Int. J. Light Electron Opt. 219, 165134 (2020b)

    Google Scholar 

  • Korpinar, T., Demirkol, R.C.: Frictional magnetic curves in 3D Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 15(02), 1850020 (2018a)

    MathSciNet  MATH  Google Scholar 

  • Korpinar, T., Demirkol, R.C.: Gravitational magnetic curves on 3D Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 15(11), 1850184 (2018b)

    MathSciNet  MATH  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Timelike spherical magnetic SN flux flows with Heisenberg spherical ferromagnetic spin with some solutions. Optik 242, 166745 (2021a)

    ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: A new approach for fractional spherical magnetic flux flows with some fractional solutions. Optik 240, 166906 (2021b)

    ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical electromagnetic flux fibers with optical antiferromagnetic model. Optik 251, 168301 (2022a)

    ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: New optical flux for optical antiferromagnetic modified drift density. Opt. Quant. Electron. 54(12), 829 (2022b)

    Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical normalized microscale for optical total recursion electromagnetic flux on Heisenberg space SH 2. Opt. Quant. Electron. 54(12), 777 (2022c)

    Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic viscosity model for electromotive microscale with second type nonlinear heat frame. Int. J. Geom. Methods Mod. Phys. 2350163 (2023a)

  • Körpinar, T., Körpinar, Z.: New optical geometric recursional electromagnetic ferromagnetic microscale. Int. J. Mod. Phys. B 2450092 (2023b)

  • Körpinar, Z., Körpinar, T.: New optical recursional spherical ferromagnetic flux for optical sonic microscale. J. Nonlinear Opt. Phys. Mater. 2350051 (2023c)

  • Körpinar, T., Körpinar, Z.: Optical visco microfluidic optimistic hybrid optical electromotive microscale. Int. J. Mod. Phys. B 2450159 (2023d)

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic Schr ödinger electromotive microscale in Minkowski space. Opt. Quant. Electron. 55(8), 681 (2023e)

    Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic complex electromotive microscale with first type Schrödinger frame. Opt. Quant. Electron. 55(6), 505 (2023f)

    Google Scholar 

  • Körpınar, T., Körpınar, Z.: Optical phase of recursional hybrid visco ferromagnetic electromagnetic microscale. Phys. Lett. A 462, 128651 (2023g)

    MathSciNet  MATH  Google Scholar 

  • Körpinar, T., Körpinar, Z.: New modeling for Heisenberg velocity microfluidic of optical ferromagnetic mKdV flux. Opt. Quant. Electron. 55(6), 523 (2023h)

    MATH  Google Scholar 

  • Korpinar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations. Eur. Phys. J. D 73(9), 1–11 (2019)

    MATH  Google Scholar 

  • Körpinar, T., Demirkol, R.C., Körpinar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber. Optik 217, 164561 (2020a)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Elastic magnetic curves of ferromagnetic and superparamagnetic models. Math. Methods Appl. Sci. 44(7), 5797–5820 (2020b)

    MathSciNet  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Phys. Scr. 96(8), 085219 (2021a)

    ADS  Google Scholar 

  • Korpinar, T., Demirkol, R.C., Khalil, E.M., Korpinar, Z., Baleanu, M.D.: In ç, Quasi binormal Schrodinger evolution of wave polarizatıon field of light wıth repulsive type. Phys. Scr. 96(4), 045104 (2021b)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space \( S_{1}^{2}\). Optik 226, 165872 (2021c)

    ADS  Google Scholar 

  • Körpinar, T., Demirkol, R.C., Körpinar, Z.: A fractionally magnetized flow of force fields and Fermi–Walker conformable derivative on the unit sphere. Waves Random Complex Media, 1–19 (2022a)

  • Körpinar, T., Körpinar, Z., Asil, V.: New optical Heisenberg model with timelike optical de Sitter flux density. Optik 265, 169438 (2022b)

    ADS  Google Scholar 

  • Körpinar, T., Ünlütürk, Y., Körpinar, Z.: A novel approach to the motion equations of null Cartan curves via the compatible Hasimoto map. Optik 290, 171220 (2023a)

    ADS  Google Scholar 

  • Körpinar, T., Demirkol, R.C., Körpinar, Z.: On the new conformable optical ferromagnetic and antiferromagnetic magnetically driven waves. Opt. Quant. Electron. 55(6), 496 (2023b)

    Google Scholar 

  • Korpinar, Z., Inc, M., Korpinar, T.: Ferromagnetic recursion for geometric phase timelike SN-magnetic fibers. Opt. Quant. Electron. 55(4), 382 (2023c)

    Google Scholar 

  • Körpinar, T., Körpinar, Z., Asil, V.: Optical electromotive microscale with first type Schrödinger frame. Optik 276, 170629 (2023d)

    ADS  Google Scholar 

  • Lakshmanan, M., Rajasekar, S.: Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer, New York (2003)

    MATH  Google Scholar 

  • Li, L., Pang, L., Wang, R., Zhang, X., Hui, Z., Han, D., Liu, W.: Ternary transition metal dichalcogenides for high power vector dissipative soliton ultrafast fiber laser. Laser Photonics Rev. 16(2), 2100255 (2022)

    ADS  Google Scholar 

  • Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  • Millen, J., Stickler, B.A.: Quantum experiments with microscale particles. Contemp. Phys. 61(3), 155–168 (2020)

    ADS  Google Scholar 

  • Othman, M.I.A., Mahdy, A.M.S.: Numerical studies for solving a free convection boundary-layer flow over a vertical plate. Mech. Mech. Eng. 22(1), 41–48 (2018)

    Google Scholar 

  • Park, H.M., Kwon, U., Joo, K.N.: Vision chromatic confocal sensor based on a geometrical phase lens. Appl. Opt. 60(10), 2898–2901 (2021)

    ADS  Google Scholar 

  • Popczyk, A., Aamoum, A., Migalska-Zalas, A., Płóciennik, P., Zawadzka, A., Mysliwiec, J., Sahraoui, B.: Selected organometallic compounds for third order nonlinear optical application. Nanomaterials 9(2), 254 (2019)

    Google Scholar 

  • Raza, N., Jannat, N., Gómez-Aguilar, J.F., Pérez-Careta, E.: New computational optical solitons for generalized complex Ginzburg–Landau equation by collective variables. Mod. Phys. Lett. B 36(28n29), 2250152 (2022)

    ADS  MathSciNet  Google Scholar 

  • Tzuang, L.D., Fang, K., Nussenzveig, P., Fan, S., Lipson, M.: Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photonics 8(9), 701–705 (2014)

    ADS  Google Scholar 

  • Vani, P., Vinitha, G., Naseer, K.A., Marimuthu, K., Durairaj, M., Sabari Girisun, T.C., Manikandan, N.: Thulium-doped barium tellurite glasses: structural, thermal, linear, and non-linear optical investigations. J. Mater. Sci.: Mater. Electron. 32, 23030–23046 (2021)

    Google Scholar 

  • Wang, T., Sohoni, M.M., Wright, L.G., Stein, M.M., Ma, S.Y., Onodera, T., McMahon, P.L.: Image sensing with multilayer nonlinear optical neural networks. Nat. Photonics 17(5), 408–415 (2023)

    ADS  Google Scholar 

  • Zhang, D., Tan, Z.: A review of optical neural networks. Appl. Sci. 12(11), 5338 (2022)

    Google Scholar 

Download references

Funding

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in the planning, execution, or analysis of this study; All authors of this paper have read and approved the final version submitted.

Corresponding author

Correspondence to Talat Körpinar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, Z., Körpinar, T. & Korkmaz, E. Optical quantum modeling for Heisenberg ferromagnetic normalized phase. Opt Quant Electron 55, 1182 (2023). https://doi.org/10.1007/s11082-023-05225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05225-6

Keywords

Navigation