Skip to main content
Log in

Design and analysis of on-chip reconfigurable photonic components for photonic multiply and accumulate operation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Photonic computing plays a significant role in high-performance computing applications. The high speed and capacity of processing larger information by photonic signals assist the high-performance computing applications such as hardware accelerators, machine learning application and deep learning applications. In this work, we propose a photonic MAC (PMAC) based on reconfigurable photonic components such as reconfigurable Mach–Zehnder interferometer (RMZI), reconfigurable directional coupler (RDC) and reconfigurable micro-ring resonator (RMRR). Theoretical analysis and simulations are carried out based on MATLAB R2023a software package and Ansys Lumerical 2018a software suits. Based on the analysis it is evident that the PMAC realization, based on RDC is more suitable for MAC operations due to its smaller footprint and less sensitive (2%) to fabrication variations. Comparatively RMZI results in larger footprint and RMRR shows more sensitive (11%) to fabrication variations. The photonic MAC proposed in this work acts as the key component for machine learning and deep learning applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Qadasi, M.A., Chrostowski, L., Shastri, B.J., Shekhar, S.: Scaling up silicon photonic-based accelerators: challenges and opportunities. APL Photonics 7(2), 020902 (2022a)

    Article  ADS  Google Scholar 

  • Al-Qadasi, M.A., Chrostowski, L., Shastri, B.J., Shekhar, S.: Scaling up silicon photonic based accelerators: challenges and opportunities. APL Photonics 7(2), 020902 (2022b)

    Article  ADS  Google Scholar 

  • Bai, B., Shu, H., Wang, X., Zou, W.: Towards silicon photonic neural networks for artificial intelligence. Sci. China Inf. Sci. 63, 1–14 (2020)

    Article  ADS  Google Scholar 

  • Bogaerts, W., Fiers, M., Dumon, P.: Design challenges in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2013)

    Article  Google Scholar 

  • Chen, Y.-H., Yang, T.-J., Emer, J., Sze, V.: Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices. IEEE J Emerg Sel Top Circuits Syst (JETCAS) 9(2), 292–308 (2019)

    Article  ADS  Google Scholar 

  • De Marinis, L., Catania, A., Castoldi, P., Contestabile, G., Bruschi, P., Piotto, M., Andriolli, N.: A codesigned integrated photonic electronic neuron. IEEE J. Quant. Electron. 58(5), 1–10 (2022)

    Article  Google Scholar 

  • Feng C, Gu J, Zhu H, Ying Z, Zhao Z, Pan DZ, Chen RT. Silicon photonic subspace neural chip for hardware-efficient deep learning. arXiv preprint arXiv:2111.06705. 2021.

  • Hamerly R, Sludds A, Bernstein L, Prabhu M, Roques-Carmes C, Carolan J, Yamamoto Y, Soljacicť M, Englund D, Towards large-scale photonic neural-network accelerators. In: 2019 IEEE international electron devices meeting (IEDM), 2019, pp 22.8.122.8.4.

  • Huang, C., Sorger, V.J., Miscuglio, M., Al-Qadasi, M., Mukherjee, A., Lampe, L., Shastri, B.J.: Prospects and applications of photonic neural networks. Adv. Phys. X 7(1), 1981155 (2022)

    Google Scholar 

  • Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Thrun, S. (2011). Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE intelligent vehicles symposium (IV) (pp. 163–168). IEEE

  • Liu, S., Wang, S., Shi, W., Liu, H., Li, Z., Mao, T.: Vehicle tracking by detection in UAV aerial video. Sci. China Inf. Sci. 62, 1–3 (2019)

    Article  Google Scholar 

  • Marquez, B.A., Filipovich, M.J., Howard, E.R., Bangari, V., Guo, Z., Morison, H.D., De Lima, T.F., Tait, A.N., Prucnal, P.R., Shastri, B.J.: Silicon photonics for artificial intelligence applications. Photoniques 104, 40–44 (2020)

    Article  ADS  Google Scholar 

  • Meerasha, M.A., Ganesh, M., Pandiyan, K.: Reconfigurable quantum photonic convolutional neural network layer utilizing photonic gate and teleportation mechanism. Opt. Quant. Electron 54, 770 (2022). https://doi.org/10.1007/s11082-022-04168-8

    Article  Google Scholar 

  • Mourgias-Alexandris, G., Moralis-Pegios, M., Tsakyridis, A., Simos, S., Dabos, G., Totovic, A., Passalis, N., Kirtas, M., Rutirawut, T., Gardes, F.Y., Tefas, A.: Noise-resilient and high-speed deep learning with coherent silicon photonics. Nat. Commun. 13, 1–7 (2022)

    Article  ADS  Google Scholar 

  • Mubarak Ali, M., Madhupriya, G., Indhumathi, R., Krishnamoorthy, P.: Photonic Processing Core for Reconfigurable Electronic-Photonic Integrated Circuit. In: Arunachalam, V., Sivasankaran, K. (eds.) Microelectronic Devices Circuits and Systems. ICMDCS 2021. Communications in Computer and nformation Science. Springer (2021)

    Google Scholar 

  • Nahmias, M.A., De Lima, T.F., Tait, A.N., Peng, H.T., Shastri, B.J., Prucnal, P.R.: Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron. 26(1), 1–18 (2019)

    Article  Google Scholar 

  • Ohno, S., Tang, R., Toprasertpong, K., Takagi, S., Takenaka, M.: Si microring resonator crossbar array for on-chip inference and training of the optical neural network. ACS Photonics 9, 2614–2622 (2022)

    Article  Google Scholar 

  • Paolini, E., De Marinis, L., Cococcioni, M., Valcarenghi, L., Maggiani, L., Andriolli, N.: Photonic-aware neural networks. Neural Comput. Appl. 34(18), 15589–15601 (2022)

    Article  Google Scholar 

  • Shaheen, S.A., Taya, S.A.: Propagation of p-polarized light in photonic crystal for sensor application. Chin. J. Phys. 55, 571–582 (2017)

    Article  Google Scholar 

  • Stark, P., Horst, F., Dangel, R., Weiss, J., Offrein, B.J.: Opportunities for integrated photonic neural networks. Nanophotonics 9(13), 4221–4232 (2020)

    Article  Google Scholar 

  • Sunny FP, Mirza A, Nikdast M. High-Performance Deep Learning Acceleration with Silicon Photonics. In Silicon Photonics for High-Performance Computing and Beyond 2021 Nov 16 (pp. 367–382). CRC Press.

  • Sunny, F.P., et al.: A survey on silicon photonics for deep learning. ACM J. Emerg. Technol. Comput. Syst. 17(4), 1–57 (2021)

    Article  Google Scholar 

  • Tait, A.N., De Lima, T.F., Nahmias, M.A., Miller, H.B., Peng, H.T., Shastri, B.J., Prucnal, P.R.: Silicon photonic modulator neuron. Phys. Rev. Appl. 11(6), 064043 (2019)

    Article  ADS  Google Scholar 

  • Taya, S.A.: Ternary photonic crystal with left-handed material layer for refractometric application. Opto-Electron. Rev. 26, 236–241 (2018)

    Article  ADS  Google Scholar 

  • Taya, S.A., Shaheen, S.A.: Binary photonic crystal for refractometric applications (TE case). Indian J. Phys. 92, 519–527 (2018)

    Article  ADS  Google Scholar 

  • Taya, S.A., Doghmosh, N., Upadhyay, A.: Properties of defect modes and band gaps of mirror symmetric metal-dielectric 1D photonic crystals. Opt. Quant. Electron. 53, 1–11 (2021a)

    Article  Google Scholar 

  • Taya, S.A., Doghmosh, N., Abutailkh, M.A., Upadhyay, A., Nassar, Z.M., Colak, I.: Properties of band gap for p-polarized wave propagating in a binary superconductor-dielectric photonic crystal. Optik 243, 167505 (2021b)

    Article  ADS  Google Scholar 

  • Waldrop, M.M.: The chips are down for Moore’s law. Nature News 530(7589), 144 (2016)

    Article  ADS  Google Scholar 

  • Xu, B., Huang, Y., Fang, Y., Wang, Z., Yu, S., Xu, R.: Recent progress of neuromorphic computing based on silicon photonics: electronic photonic co-design, device, and architecture. InPhotonics 9(10), 698 (2022)

    Article  ADS  Google Scholar 

  • Zhou, H., Dong, J., Cheng, J., Dong, W., Huang, C., Shen, Y., Zhang, Q., Gu, M., Qian, C., Chen, H., Ruan, Z.: Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 1–21 (2022)

    Article  Google Scholar 

Download references

Funding

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Concept - MA; Design - MA; Supervision - JP; Resources – MA, Data Collection and/or Processing – MA; Literature Search - MA; Writing Manuscript – MA, JP; Critical Review – JP; Approvals – JP

Corresponding author

Correspondence to A. Mosses.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosses, A., Prathap, P.M.J. Design and analysis of on-chip reconfigurable photonic components for photonic multiply and accumulate operation. Opt Quant Electron 55, 934 (2023). https://doi.org/10.1007/s11082-023-05200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05200-1

Keywords

Navigation