Skip to main content
Log in

A weakly-coupled air-hole-bow-tie-assisted few-mode fiber for short-haul MDM across C + L band

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present a weakly-coupled air-hole-bow-tie-assisted few-mode fiber (AH-BT-FMF) supporting 26 eigenmodes for short-haul communication systems across the C + L band. The elliptical core, air holes, and bow-tie stress-applying area are introduced to effectively split adjacent eigenmodes. We evaluate the impact of fiber parameters on minimum effective refractive index difference (min Δneff) between adjacent modes, birefringence (B), and bending loss at a wavelength of 1550 nm. The broadband performance of the fiber is further investigated across the C + L band, including the effective refractive index difference (Δneff) between adjacent modes, differential mode delay (DMD), dispersion, and effective area (Aeff). Simulated results indicate that the 26 eigenmodes supported by the designed fiber are completely separated. The min Δneff between adjacent modes is larger than 1.982 × 10−4 over the whole C + L band. And the designed fiber has a higher effective area (66.56 –131.1 µm2), lower DMD (− 8.07  to  10.96 ns/km), and good bending resistance (< 10–4 dB/m). The designed fiber can be used for short-haul multiple-input multiple-output-free eigenmode-division multiplexing systems to improve transmission capacity and expand bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Availability of data and materials

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Beshr, A.H., Aly, M. H.: Raman gain and Raman gain coefficient for SiO2, GeO2, B2O3 and P2O5 glasses. In: Radio Science Conference. IEEE, pp. 1–7 (2007)

  • Butov, O.V., Golant, K.M., Tomashuk, A.L., Stralen, M., Breuls, A.: Refractive index dispersion of doped silica for fiber optics. Opt. Commun. 213(4–6), 301–308 (2002)

    Article  ADS  Google Scholar 

  • Chen, H.Y., Chen. Y.J., Wang, J.P., Lu, H.M., Feng, L.F., Song, W.J.: Octagonal polarization-maintaining supermode fiber for mode division multiplexing system. Opt. Commun. 510(26), 127894 (2022)

  • Chen, S., Wang, J.: Fully degeneracy-lifted bow-tie elliptical ring-core multi-mode fiber. Opt. Express 26(14), 18773–18782 (2018)

    Article  ADS  Google Scholar 

  • Corsi, A., Chang, J.H., Wang, R., Wang, L., Larochelle, S.: Highly-elliptical-core fiber with stress-induced birefringence for mode multiplexing. Opt. Lett. 45(10), 2822–2825 (2020)

  • Doran, N.J., Sugden, K., Bennion, I., Williams, J.A.R.: Fibre dispersion compensation using a chirped in-fibre Bragg grating. Electron. Lett. 3420(12), 985–987 (1994)

    ADS  Google Scholar 

  • Du, Z.Y., Wang, C.C., Li, P.X., Li, P., Zheng, J.J., Ning, T.G.: Fully degeneracy-lifted PANDA few-mode fiber based on the segmented ring-core. Optik 255, 168710 (2022)

  • Eronyan, M.A., Devetyarov, D.R., Reutskiy, A.A., Untilov, A.A., Aksarin, S.M., Meshkovskiy, I.K., Bisyarin, M.A., Pechenkin, A.A.: Polarization-maintaining and radiation resistant optical fiber with germanosilicate elliptical core. Opt. Fiber Technol. 68(3), 102789 (2022)

  • Gao, Y., Li, Y.L., Li, X., Zheng, H.J., Bai, C.L., Hu, W.S., Xu, H.Y., Dong, Q.H., Xing, H.D., Su, Y.Q., Yin, Y.Q., Wei, C.Q., Zhao, B.Q.: An elliptical-core few-mode fiber with low loss and low crosstalk for the MIMO-FREE applications. Front. Phys. 9, 796549 (2022)

  • Guan, R.F., Zhu, F.L., Gan, Z.Y., Huang, D.X., Liu, S.: Stress birefringence analysis of polarization maintaining optical fibers. Opt. Fiber Technol. 11(3), 240–254 (2005)

    Article  ADS  Google Scholar 

  • Han, X., Li, H.S., Jian, S.S.: Hole-assisted polarization-maintaining few-mode fiber. Opt. Laser Technol. 107, 162–168 (2018)

    Article  ADS  Google Scholar 

  • Hossain, M.S.B., Rahman, T., Stojanović, N., Rosales, R., Wettlin, T., Calabrò, S., Wei, J.L., Xie, C.S., Pachnicke, S.: Transmission beyond 200 Gbit/s with IM/DD system for campus and intra-datacenter network applications. IEEE Photonics Technol. Lett. 33(5), 63–266 (2021)

    Article  Google Scholar 

  • Inan, B., Spinnler, B., Ferreira, F., van den Borne, D., Lobato, A., Adhikari, S., Sleiffer, V.A., Kuschnerov, M., Hanik, N., Jansen, S.L.: DSP complexity of mode-division multiplexed receivers. Opt. Express 20(10), 10859–10869 (2012)

    Article  ADS  Google Scholar 

  • Ip, E., Milione, G., Li, M.J., Cvijetic, N., Kanonakis, K., Stone, J., Peng, G.Z., Prieto, X., Montero, C., Moreno, V., Liñares, J.: SDM transmission of real-time 10gbe traffic using commercial SFP + transceivers over 0.5km elliptical-core few-mode fiber. Opt. Express 23(13), 17120–17126 (2015)

    Article  ADS  Google Scholar 

  • Jundt, D.H.: Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate. Opt. Lett. 22, 1553–1555 (1997)

    Article  ADS  Google Scholar 

  • Kai, Z., De-Yuan, C., Yong-Jun, F., Huai, W., Yan, W., Feng-Ping, Y., Shu-Qin, L., Ti-Gang, N., Wei, J., Shui-Sheng, J.: Design and fabrication of Panda-type erbium-doped polarization-maintaining fibres. Chin. Phys. 16(2), 478–484 (2007)

    Article  Google Scholar 

  • Kasahara, M., Saitoh, K., Sakamoto, T.J., Hanzawa, N., Matsui, T., Tsujikawa, K., Yamamoto, F.: Design of three-spatial-mode ring-core fiber. J. Lightwave Technol. 32(7), 1337–1343 (2014)

    Article  ADS  Google Scholar 

  • Kunimasa, S., Masanori, K.: Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express 11, 3100–3109 (2003)

    Article  Google Scholar 

  • Li, R.D., Kumar, P., Kath, W.L.: Dispersion compensation with phase-sensitive optical amplifiers. J. Lightwave Technol. 12(3), 541–549 (1994)

    Article  ADS  Google Scholar 

  • Li, G.F., Bai, N., Zhao, N.B., Xia, C.: Space-division multiplexing: the next frontier in optical communication. Adv. Opt. Photon. 6, 413–487 (2014)

    Article  Google Scholar 

  • Li, H.S., Xiao, H., Ren, G.B.: Polarization-maintaining few-mode optical fibers with air-hole structures. In: 2018 Asia Communications and Photonics Conference (ACP), pp. 1–3 (2018)

  • Liang, J.P., Mo, Q., Fu, S.N., Tang, M., Shum, P., Liu, D.M.: Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission. Opt. Lett. 41(13), 3058–3061 (2016)

    Article  ADS  Google Scholar 

  • Ma, L., Tsujikawa, K., Hanzawa, N., Aozasa, S., Nozoe, S., Yamamoto, F.: Design and fabrication of low loss hole-assisted few-mode fibers with consideration of surface imperfection of air holes. J. Lightwave Technol. 34(22), 5164–5169 (2016)

    Article  ADS  Google Scholar 

  • Noe, R., Sandel, D., Yoshida-Dierolf, M., Hinz, S., Mirvoda, V., Schopflin, A., Gungener, C., Gottwald, E., Scheerer, C., Fischer, G.: Polarization mode dispersion compensation at 10, 20, and 40 gb/s with various optical equalizers. J. Lightwave Technol. 17(9), 1602–1616 (1999)

    Article  ADS  Google Scholar 

  • Parmigiani, F., Jung, Y., Grüner-Nielsen, L., Geisler, T., Petropoulos, P., Richardson, D.J.: Elliptical core few mode fibers for multiple-input multiple output-free space division multiplexing transmission. IEEE Photonics Technol. Lett. 29(21), 1764–1767 (2017)

    Article  ADS  Google Scholar 

  • Poole, C.D., Wiesenfeld, J.M., DiGiovanni, D.J., Vengsarkar, A.M.: Optical fiber-based dispersion compensation using higher order modes near cutoff. J. Lightwave Technol. 12(10), 1746–1758 (1994)

    Article  ADS  Google Scholar 

  • Ramachandran, S., Fini, J., Mermelstein, M., Nicholson, J., Ghalmi, S., Yan, M.: Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers. Laser Photonics Rev. 2 (2008)

  • Riesen, N., Love, J.D., Arkwright, J.W.: Few-mode elliptical-core fiber data transmission. IEEE Photonics Technol. Lett. 24(5), 344–346 (2012)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Sinha, R.K., Agarwala, R.A.: Higher-order dispersion compensation by differential time delay. Opt. Fiber Technol. 4(1), 135–143 (1998)

    Article  ADS  Google Scholar 

  • Teng F., Jin Z., Chen S., Tian, H.: Neural network for the inverse design of polarization-maintaining few-mode panda-type ring-core fiber. In: 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), pp. 1–3 (2020)

  • Wang, X., Lou, S.Q., Lu, W.L., Sheng, X.Z., Zhao, T.T., Hua, P.: Bend resistant large mode area fiber with multi-trench in the core. IEEE J. Sel. Top. Quantum Electron. 22(2), 117–124 (2016)

    Article  ADS  Google Scholar 

  • Wang, L., Nejad, R.M., Corsi, A., Lin, J., Messaddeq, Y., Rusch, L., LaRochelle, S.: Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing. Opt. Express 25(10), 11736–11749 (2017a)

    Article  ADS  Google Scholar 

  • Wang, L.L., Ai, J.Z., Long, Z., Wang, A.D., Fu, S.N., Cheng, D., Qi, M., Wang, J.: MDM transmission of cap-16 signals over 1.1- km anti-bending trench-assisted elliptical-core few-mode fiber in passive optical networks. Opt. Express 25(19), 22991–23002 (2017b)

    Article  ADS  Google Scholar 

  • Wemple, S.H., Pinnow, D.A., Rich, T.C., Jaeger, R.E., Van Uitert, L.G.: Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations. J. Appl. Phys. 44, 5432–5437 (1973)

    Article  ADS  Google Scholar 

  • Xia, C., Bai, N., Ozdur, I., Zhou, X., Li, G.F.: Supermodes for optical transmission. Opt. Express 19(17), 16653–16664 (2011)

    Article  ADS  Google Scholar 

  • Xiao, H., Li, H., Wu, B., Dong, Y., Xiao, S., Jian, S.: Elliptical hollow-core optical fibers for polarization-maintaining few-mode guidance. Opt. Fiber Technol. 48(MAR.), 7–11 (2019)

    Article  ADS  Google Scholar 

  • Xie, Y.H., Pei, L., Zheng, J.J., Zhao, Q., Ning, T.G., Li, J.: Design of steering wheel-type ring depressed-core 10-mode fiber with fully improved mode spacing. Opt. Express 9(10), 15067–15077 (2021)

    Article  ADS  Google Scholar 

  • Yang, T.X., Zhang, H., Xi, L.X., Yang, J.X., Chen, Z., Wang, X.Q., Zhang X.G.: Design of a novel bow-tie polarization ring-core few-mode fiber for MIMO-free MDM system. In: 26th Optoelectronics and Communications Conference (2021a)

  • Yang, T.X., Zhang, H., Xi, L.X., Li, Q.K., Zhang, X.G., Wang, X.Q., Zhang, W.B., Tang, X.F.: Design of 18-mode hole-assisted elliptical-core polarization-maintaining few-mode fiber. ScienceDirect 507(15) (2021b)

  • Yu, Q.R., Bao, X.Y., Chen, L.: Temperature dependence of brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintaining fibers. Opt. Lett. 29(1), 17–19 (2004)

    Article  ADS  Google Scholar 

  • Zhang, X.Q., Jiang, Y., Xu, Y., Chen, R.S., Wang, A.T., Ming, H., Zhao, W.S.: Polarization-maintaining fiber composed of an elliptical ring core and two circular air holes. Appl. Opt. 58, 8865–8870 (2019)

    Article  ADS  Google Scholar 

  • Zhang, L., Chen, J.J., Agrell, E., Lin, R., Wosinska, L.: Enabling technologies for optical data center networks: spatial division multiplexing. J. Lightwave Technol. 38(1), 18–30 (2020a)

    Article  ADS  Google Scholar 

  • Zhang, Y.Y., Ren, F., Fan, X., Zhangsun, T., Chen, W., Wang, J.: Design of weakly coupled ten-vector-mode elliptical-core Bragg fiber for short-haul communication across O+C+L band. Indian J. Phys. 95, 349–359 (2020b)

    Article  ADS  Google Scholar 

  • Zhang, J.Y., Ren, F., Niu, J.J., Lei, X., Zhang, Y.F., Cui, F.J., Wang, J.P.: Design of weakly coupled 20-eigenmode bow-tie rectangular dual-step fiber for short-haul communication in O band. Opt. Eng. 60(12), 126107 (2021)

    Article  ADS  Google Scholar 

  • Zhang, J., Chen, Y.K., Wu, Z.C., Feng, S.J, Shum, P., Huang, T.Y.: Panda type separated-circles-formed elliptical ring core few-mode fiber. Opt. Fiber Technol. 73, 103067 (2022)

  • Zhao, J.J., Tang, M., Oh, K., Feng, Z.H., Zhao, C., Liao, R.L., Fu, S.N., Shum, P., Liu, D.M.: Polarization-maintaining few-mode fiber composed of a central circular-hole and an elliptical-ring core. Photonics Res. 5(3), 261–266 (2017)

    Article  Google Scholar 

  • Zheng, K., Chang, D. Y., Fu. Y. J., Wei, H., Wei, Y., Yan, F. P., Lou, Sh. Q., Ning. T, G., Jian, W., Jian, Sh. Sh.: Design and fabrication of Panda-type erbium-doped polarization-maintaining fibres. Chinese Physics. 16(2), 478–484 (2007)

  • Zhu, B., Taunay, T.F., Fishteyn, M., Liu, X., Chandrasekhar, S., Yan, M.F., Fini, J.M., Monberg, E.M., Dimarcello, F.V.: 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express 19(17), 16665–16671 (2011)

    Article  ADS  Google Scholar 

  • Ziolowicz, A., Szymanski, M., Ostrowski, L., Napierala, M., Poturaj, K., Makara, M., Mergo, P., Nasilowski, T.: Bend insensitive hole-assisted multicore fibre for next generation transmission systems. In: 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference. pp. 1–4. Optica Publishing Group (2015)

Download references

Funding

This work is supported by the Fundamental Research Funds for the Central Universities (FRF-TP-19-016A2).

Author information

Authors and Affiliations

Authors

Contributions

FR: Conceptualization, Methodology. YC: Investigation, Software, Writing—original. XL: Review, Editing. YZ: Data Curation. XW: Data Curation. JW: Supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Fang Ren.

Ethics declarations

Conflict of interest

All authors have declared that they have no conflict of interest.

Ethical approval

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ci, Y., Ren, F., Lei, X. et al. A weakly-coupled air-hole-bow-tie-assisted few-mode fiber for short-haul MDM across C + L band. Opt Quant Electron 55, 924 (2023). https://doi.org/10.1007/s11082-023-05176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05176-y

Keywords

Navigation