Skip to main content
Log in

Innovative solutions and sensitivity analysis of a fractional complex Ginzburg–Landau equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we consider the fractional complex Ginzburg–Landau equation with Kerr law and power law nonlinearity. Using the conformable derivative approach and the bifurcation method, we effectively derived new explicit exact parametric representations of solutions (including solitary wave solutions, periodic wave solutions, kink and antikink wave solution, compacton) under different parameter conditions. The quasiperiodic, chaotic behavior and sensitivity analysis of the model is studied for different values of parameters after deploying an external periodic force. Finally, various 2D and 3D simulation figures are plotted to show the physical significance of these exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abdeljawad, T.: Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 2013, 36 (2013)

    MathSciNet  MATH  Google Scholar 

  • Abdeljawad, T., Atici, F..M.: On the definitions of Nabla fractional operators. Abstr. Appl. Anal.2012 406757, 13 (2012). https://doi.org/10.1155/2012/406757

    Article  MATH  Google Scholar 

  • Abdou, M.A., Elhanbaly, A.: Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method. Commun. Nonlinear Sci. Numer. Simul. 12, 1229–1241 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • Abdou, M.A., Soliman, A.A., Biswas, A., et al.: Dark-singular combo optical solitons with fractional complex Ginzburg-Landau equation. Optik 171, 463–467 (2018)

    ADS  Google Scholar 

  • Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge, UK (1991)

    MATH  Google Scholar 

  • Akram, G., Sadaf M., Mariyam, H.: A comparative study of the optical solitons for the fractional complex Ginzburg-Landau equation using different fractional differential operators. Optik 256, Article 168626 (2022)

  • Alderremy, A.A., Abdel-Gawad, H.I., Saad, K.M., et al.: New exact solutions of time conformable fractional Klein Kramer equation. Opt Quant. Electron 53, 693 (2021)

    Google Scholar 

  • Arshed, S.: Soliton solutions of fractional complex Ginzburg-Landau equation with Kerr law and non-Kerr law media. Optik 160, 322–332 (2018)

    ADS  Google Scholar 

  • Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proceedings of the American Math. Society 137, 981–989 (2009)

    MathSciNet  MATH  Google Scholar 

  • Barnett, M..P., Capitani, J..F., von zur Gathen, J., Gerhard, J.: Symbolic calculation in chemistry: selected examples. Inter. J Quant. Chemistry 100(2), 80–104 (2004)

    Google Scholar 

  • Benkhettou, N., Brito da Cruz, A..M..C., Torres, D..F..M.: A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration. Signal Process 107, 230–237 (2015)

    Google Scholar 

  • Biswas, A., Fessak, M., Johnson, S., et al.: Optical soliton perturbation in non-Kerr law media: traveling wave solution. Opt Laser Technol 44(1), 263–8 (2012)

    ADS  Google Scholar 

  • Biswas, A., Yildirim, Y., Yasar, E., et al.: Optical soliton perturbation with complex Ginzburg-Landau equation using trial solution approach. Optik 160, 44–60 (2018)

    ADS  Google Scholar 

  • Boyadjiev, L., Scherer, R.: Fractional extensions of the temperature field problem in oil strata. Kuwait J Sci. Eng. 31(2), 15–32 (2004)

    Google Scholar 

  • Byrd, P.F., Fridman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Berlin (1971)

    Google Scholar 

  • Elmandouh, A.: Bifurcation and new traveling wave solutions for the 2D Ginzburg-Landau equation. Eur. Phys. J Plus 135(8), 648–662 (2020)

    Google Scholar 

  • Fang, J., Mou, D., Wang, Y., et al.: Soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg-Landau equation. Results Phys. 20, Article 103710 (2021)

  • Ghanbari, B., Gómez-Aguilar, J.F.: Optical soliton solutions of the Ginzburg-Landau equation with conformable derivative and Kerr law nonlinearity. Revista Mexicana de Fisica 65, 73–81 (2019)

    MathSciNet  Google Scholar 

  • Gray, H.L., Zhang, N.F.: On a new definition of the fractional difference. Math. Comput. 50(182), 513–529 (1988)

    MathSciNet  MATH  Google Scholar 

  • Han, T.Y., Li Z., Zhang, X.: Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation. Phys. Lett. A, 395, Article 127217 (2021)

  • He, B., Meng, Q., Long, Y.: The bifurcation and exact peakons, solitary and periodic wave solutions for the Kudryashov -Sinelshchikov equation. Commun. Nonlinear Sci. Numer. Simul. 17, 4137–4148 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J Comput. Appl. Math. 265, 65701 (2014)

    MathSciNet  MATH  Google Scholar 

  • Kilbas, A., Srivastava, M.H., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. North-Holland Mathematics Studies, 204, (2006)

  • Kudryashov, N.A.: Exact soliton solutions of the generalized evolution equation of wave dynamics. J Appl. Math. Mechanics 52(3), 361–365 (1988)

    MathSciNet  Google Scholar 

  • Kudryashov, N.A.: Exact solutions of the generalized Kuramoto-Sivashinsky equation. Phys. Lett. A 147, 287–291 (1990)

    ADS  MathSciNet  Google Scholar 

  • Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos, Solitons and Fractals 24, 1217–31 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Leta, T.D., Liu, W., El Achab, A.: Dynamics of singular traveling wave solutions of a short Capillary-Gravity wave equation. J Appl. Anal. Comput. 11(3), 1191–1207 (2021)

    MathSciNet  Google Scholar 

  • Leta, T.D., Liu, W., El Achab, A., et al.: Dynamical behavior of traveling wave Solutions for a \((2+1)\)-dimensional Bogoyavlenskii coupled system. Qual. Theory Dyn. Syst. 20(1), 1–22 (2021)

    MathSciNet  MATH  Google Scholar 

  • Li, J.: Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions. Science, Beijing (2013)

    Google Scholar 

  • Liu, H.H., Yan, F.: Bifurcation and exact travelling wave solutions for Gardner-KP equation. Appl. Math. Comput. 228, 384–394 (2012)

    MathSciNet  MATH  Google Scholar 

  • Liu, Z.R., Li, J.B.: Bifurcation of solitary waves and domain wall waves for KdV-like equation with higher order nonlinearity. Int. J. Bifur. Chaos 12, 397–407 (2002)

    MathSciNet  MATH  Google Scholar 

  • López, V.: Numerical continuation of invariant solutions of the complex Ginzburg-Landau equation. Commun. Nonlinear Sci. Numer. Simul. 61, 248–270 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • Lu, H., Lü, S., Feng, Z.: Asymptotic dynamics of 2D fractional complex Ginzburg-Landau equation. Inter. J. Bifur. Chaos 23(12), 1350202 (12 pages) (2013)

  • Lu, H., Bates, P.W., Lü, S., Zhang, M.: Dynamics of the 3-D fractional complex Ginzburg-Landau equation. J. Differ. Equ. 259(10), 5276–5301 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Lü, S.: The dynamical behavior of the Ginzburg-Landau equation and its Fourier spectral approximation. Numer. Math. 22, 1–9 (2000)

    MathSciNet  MATH  Google Scholar 

  • Lu, P.H., Wang, B.H., Dai, C.Q.: Fractional traveling wave solutions of the \((2+1)\)-dimensional fractional complex Ginzburg-Landau equation via two methods. Math. Methods in the Appl. Sci. 43, 1–9 (2020)

    MathSciNet  MATH  Google Scholar 

  • Lü, X., Zhu, H.-W., Meng, X.-H., et al.: Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications. J Math. Anal. Appl. 336(2), 1305–1315 (2007)

    MathSciNet  MATH  Google Scholar 

  • Milovanov, A.V., Rasmussen, J.J.: Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. A 337(1–2), 75–80 (2005)

    ADS  MATH  Google Scholar 

  • Mohammed, W.W., El-Morshedy, M.: The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik-Novikov-Veselov system. Math. Comput. Simul. 190, 192–202 (2021)

    MathSciNet  MATH  Google Scholar 

  • Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996)

    ADS  MATH  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego CA (1999)

    MATH  Google Scholar 

  • Saha Ray, S.: Similarity solutions for Keller-Segel model with fractional diffusion of cells. Math. Methods Appl. Sci. 44(10), 8379–8396 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  • Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  • Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys 30(1), 134–144 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  • Sirisubtawee, S., Koonprasert, S., Sungnul, S., Leekparn, T.: Exact traveling wave solutions of the space-time fractional complex Ginzburg-Landau equation and the space-time fractional Phi-4 equation using reliable methods. Adv. Differ. Equ. 2019(1), 219 (2019)

    MathSciNet  MATH  Google Scholar 

  • Sulaiman, T..A., Baskonus, H..M., Bulut, H.: Optical solitons and other solutions to the conformable space-time fractional complex Ginzburg-Landau equation under Kerr law nonlinearity. Pramana-J. Phys 91(4)(58), 1–8 (2018)

    Google Scholar 

  • Wang, K.L.: Totally new soliton phenomena in the fractional Zoomeron model for shallow water. Fractals 31, 2350029 (2023)

    ADS  MATH  Google Scholar 

  • Wang, K.L.: Construction of fractal soliton solutions for the fractional evolution equations with conformable derivative. Fractals 31(1), 2350014 (10 pages) (2023)

  • Yel, G., Bulut, H.: New wave approach to the conformable resonant nonlinear Schödinger’s equation with Kerr-law nonlinearity. Opt Quant. Electron 54, 252 (2022)

    Google Scholar 

  • Zhang, Q., Li, Y., Su, M.: The local and global existence of solutions for a time fractional complex Ginzburg-Landau equation. J. Math. Anal. Appl. 469(1), 16–43 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all of the anonymous reviewers for their valuable suggestions.

Funding

The first author is supported by the TYSP MoST of China (Grant No: Ethiopia-18-010) and the National Natural Science Foundation China (Grant Numbers 11950410502, 12271261). The second author is supported by Jiangsu province college students innovation and entrepreneurship training program support project (Provincial Project Number 202210300114Y).

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally.

Corresponding author

Correspondence to Temesgen Desta Leta.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leta, T.D., Chen, J. & El Achab, A. Innovative solutions and sensitivity analysis of a fractional complex Ginzburg–Landau equation. Opt Quant Electron 55, 931 (2023). https://doi.org/10.1007/s11082-023-05153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05153-5

Keywords

Mathematics Subject Classification

Navigation