Skip to main content
Log in

Dynamics of localized symmetric periodical waves in the non-Kerr media

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A perturbed higher-order nonlinear Schrödinger equation with self-steepening, self-frequency shift, and quintic non-Kerr nonlinearity terms is used to investigate the dynamics of ultrashort periodical pulses with special symmetries in the non-Kerr media. Via the linear stability analysis, the modulational stability of the continuous-wave background which supports the periodical waves is investigated in details and the analytical expression for the gain spectrum of modulational instability is presented. The effects of various equation parameters (such as the third order dispersion restraint, the quintic non-Kerr nonlinearity parameters, and the self-steepening and self-frequency shift parameters) on the modulational instability are analyzed. We demonstrate that the competing quintic non-Kerr nonlinearity induces propagating periodical waves that show special symmetries such as the mirror- and rotational-symmetry. Parameter domains are delineated in which these optical periodical pulses exist. We show that Khare–Sukhatme superposition procedure can be applied for generating superposition periodical pulses. We further show that the amplitude and the width of the periodical pulses in both anomalous and normal dispersion regimes can be controlled by varying the third order dispersion restraint, the self-steepening term, the self-frequency shift, as well as the quintic non-Kerr nonlinearity terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

No data was used for the research described in the article

References

  • Ablowitz, M.J.: Nonlinear waves and the inverse scattering transform. Optik 278, 170710 (2023)

    ADS  Google Scholar 

  • Abramczyk, H., Brozek-Pluska, B., Surmacki, J., Tondusson, M., Freysz, E.: Photostability of biological systems–Femtosecond dynamics of zinc tetrasulfonated phthalocyanine at cancerous and noncancerous human Breast tissues. J. Photochem. Photobiol., A 332, 10–24 (2017)

    Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic, (2007)

  • Agrawal, G.P.: Nonlinear Fiber Optics. Academic, San Diego (2001)

    MATH  Google Scholar 

  • Akhmediev, N.N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  • Akram, S., Ahmad, J., Sarwar, S., Ali, A.: Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrödinger equation and stability analysis. Opt. Quant. Electron. 55, 450 (2023)

    Google Scholar 

  • Barth, J.V., Costantini, G., Kern, K.: Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005)

    ADS  Google Scholar 

  • Belyaeva, T.L., Mena-Contla, A., Morales-Lara, L., Peña-Moreno, R., Serkin, V.N.: Femtosecond sliding self-pumping and self-cleaning effects in nonlinear dynamics of the higher-order induced modulational instability under the strong Raman self-scattering. Optik 248, 168046 (2021)

    ADS  Google Scholar 

  • Biswas, A., Moran, A., Milovic, D., Majid, F., & Biswas, K.C.: An exact solution for the modified nonlinear Schrödinger’s equation for Davydov solitons in.: An exact solution for the modified nonlinear Schrödinger’s equation for Davydov solitons in \(\alpha -\)helix proteins. Math. Biosci. 227, 68–71 (2010)

    MathSciNet  MATH  Google Scholar 

  • Chabchoub, A., Grimshaw, R.H.J.: The hydrodynamic nonlinear Schrödinger equation space and time. Fluids 1, 23 (2016)

    ADS  Google Scholar 

  • Chai, Jun, Tian, Bo., Zhen, Hui-Ling., Sun, Wen-Rong., Liu, De-Yin.: Dynamic behaviors for a perturbed nonlinear Schrödinger equation with the power-law nonlinearity in a non-Kerr medium. Commun. Nonlinear. Sci. Numer. Simulat. 45, 93–103 (2017)

    ADS  MATH  Google Scholar 

  • Choudhuri, A., Porsezian, K.: Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrodinger equation. Phys. Rev. A 85, 033820 (2012)

    ADS  Google Scholar 

  • Choudhuri, A., Porsezian, K.: Higher-Order Nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms: a model for sub-10fs pulse propagation. Phys. Rev. A 88, 033808 (2013)

    ADS  Google Scholar 

  • Goyal, A., Gupta, R., Kumar, C.N.: Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84, 063830 (2011)

    ADS  Google Scholar 

  • Houwe, A., Abbagari, S., Inc, M., Betchewe, G., Doka, S.Y., Kofane, T.C., Nisar, K.S.: Chirped solitons in discrete electrical transmission line. Results Phys. 18, 103188 (2020)

    Google Scholar 

  • Ilati, Mohammad, Dehghan, Mehdi: DMLPG method for numerical simulation of soliton collisions in multi-dimensional coupled damped nonlinear Schrödinger system which arises from Bose-Einstein condensates. Appl. Math. Comput. 346, 244–253 (2019)

    MathSciNet  MATH  Google Scholar 

  • Ismael, H.F., Akkilic, A.N., Murad, M.A.S., Bulut, H., Mahmoud, W., Osman, M.S.: Boiti-Leon-Manna Pempinelli equation including time-dependent coefcient (vcBLMPE): a variety of nonautonomous geometrical structures of wave solutions. Nonlinear Dyn. 110, 3699–3712 (2022)

    Google Scholar 

  • Kärtner, F.X.: Few-Cycle Laser Pulse Generation and its Applications. Springer-Verlag, Berlin (2004)

    Google Scholar 

  • Kengne, E.: Engineering nonautonomous chirped rogue waves in coupled nonlinear Schrödinger equations with external potentials in normal dispersion regimes. Optik 280, 170778 (2023)

    ADS  Google Scholar 

  • Kengne, E., Lakhssassi, A.: Femtosecond solitons and double-kink solitons in passively mode locked lasers. Opt. Quant. Electron. 55, 565 (2023)

    Google Scholar 

  • Kengne, E., Liu, W.M., English, L.Q., Malomed, B.A.: Ginzburg-Landau models of nonlinear electric transmission networks. Phys. Rep. 982, 1–124 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  • Khare, A., Sukhatme, U.: Cyclic identities involving Jacobi elliptic functions. J. Math. Phys. 43, 3798–3806 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  • Khater, M.M., Attia, R.A., Abdel-Aty, A.H., Abdou, M.A., Eleuch, H., Lu, D.: Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term. Results Phys. 16, 103000 (2020)

    Google Scholar 

  • Klenke, A., Hädrich, S., Kienel, M., Eidam, T., Limpert, J., Tünnermann, A.: Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression. Opt. Lett. 39, 3520–3522 (2014)

    ADS  Google Scholar 

  • Kuptsov, G.V., Petrov, V.V., Laptev, A.V., Petrov, V.A., Pestryakov, E.V.: Simulation of picosecond pulse propagation in fibre-based radiation shaping units. Quant. Electron. 46, 801-805 (2016)

    ADS  Google Scholar 

  • Mahmoud, D., Abdoulkary, S., English, L.Q., Mohamadou, A.: Backward- and forward-wave soliton coexistence due to second-neighbor coupling in a left-handed transmission line. Nonlinear Dyn. 108, 4103–4114 (2022)

    Google Scholar 

  • Ortiz, A.K., Prinari, B.: Inverse scattering transform and solitons for square matrix nonlinear Schrödinger equations with mixed sign reductions and nonzero boundary conditions. J. Nonlinear Math. Phys. 27, 130-161 (2020)

    MathSciNet  MATH  Google Scholar 

  • Osman, M.S., Almusawa, H., Tariq, K.U., Anwar, S., Kumar, S., Younis, M., Ma, W.X.: On global behavior for complex soliton solutions of the perturbed nonlinear Schrödinger equation in nonlinear optical fibers. J. Ocean Eng. Sci. 7, 431–443 (2022)

    Google Scholar 

  • Perego, A.M., Bessin, F., Mussot, A.: Complexity of modulation instability. Phys. Rev. Res. 4, L022057 (2022)

    Google Scholar 

  • Qiming, Lu., Shen, Qi., Guan, Jianyu, Li, Min, Chen, Jiupeng, Liao, Shengkai, Zhang, Qiang, Peng, Chengzhi: Sensitive linear optical sampling system with femtosecond precision. Rev. Sci. Instrum. 91, 035113 (2020)

    ADS  Google Scholar 

  • Raza Rizvi, S.T., Ahmad, S., Faisal Nadeem, M., Awais, M.: Optical dromions for perturbed nonlinear Schrödinger equation with cubic quintic septic media. Optik 226, 165955 (2021)

    ADS  Google Scholar 

  • Rehman, S.U., Ahmad, J.: Investigation of exact soliton solutions to Chen-Lee-Liu equation in birefringent fibers and stability analysis. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.026

    Article  Google Scholar 

  • Salas, A.H., El-Tantawy, S.A., Castillo, H.J.E.: The hybrid finite difference and moving boundary methods for solving a linear damped nonlinear Schrödinger equation to model rogue waves and breathers in plasma physics. Math. Probl. Eng. 2020, 1–11 (2020)

    MATH  Google Scholar 

  • Schürmann, H.W., Serov, V.S.: Traveling wave solutions of a generalized modified Kadomtsev-Petviashvili equation. J. Math. Phys. 45, 2181–2187 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  • Schürmann, H.W., Serov, V.S., Nickel, J.: Superposition in nonlinear wave and evolution equations. Int. J. Theor. Phys. 45, 1057–1073 (2006)

    MathSciNet  MATH  Google Scholar 

  • Seadawy, A.R., Rizvi, S.T., Akram, U., Naqvi, S.K.: Optical and analytical soliton solutions to higher order non-Kerr nonlinear Schrödinger dynamical model. J. Geom. Phys. 179, 104616 (2022)

    MATH  Google Scholar 

  • Shackeerali, M., Shafeeque Ali, A.K., Uthayakumar, A.: Impact of higher-order effects on modulation instability in negative index materials. Optik 256, 168660 (2022)

    ADS  Google Scholar 

  • Shehata, M.S.M., Bekir, A.: New perceptions for the bright and dark soliton solutions to the modified nonlinear Schrödinger equation. Int. J. Mod. Phys. B. 9, 2350204 (2023)

    Google Scholar 

  • Sultan, A.M., Lu, D., Arshad, M., Rehman, H.U., Saleem, M.S.: Soliton solutions of higher order dispersive cubic-quintic nonlinear Schrödinger equation and its applications. Chin. J. Phys. 67, 405–413 (2020)

    Google Scholar 

  • Triki, H., Azzouzi, F., Grelu, P.: Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms. Opt. Commun. 309, 71–79 (2013)

    ADS  Google Scholar 

  • Triki, H., Biswas, A., Milović, D., & Belić, M.: Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities. Opt. Commun. 366, 362–369 (2016)

    ADS  Google Scholar 

  • Triki, H., Porsezian, K., Grelu, P.: Chirped soliton solutions for the generalized nonlinear Schrödinger equation with polynomial nonlinearity and non-Kerr terms of arbitrary order. J. Opt. 18, 075504 (2016)

    ADS  Google Scholar 

  • Triki, H., Benlalli, A., Zhou, Q., Biswas, A., Ekici, M., Alzahrani, A.K., Xu, S.L., Belic, M.R.: Formation of chirped kink similaritons in non-Kerr media with varying Raman effect. Results Phys. 26, 104381 (2021)

    Google Scholar 

  • Van, Robert A.: Gorder, Turing and Benjamin-Feir instability mechanisms in non-autonomous systems. Proc. R. Soc. A 476, 20200003 (2020)

    ADS  MATH  Google Scholar 

  • Vyas, V.M., Patel, P., Panigrahi, P.K., Kumar, C.N., Greiner, W.: Chirped chiral solitons in the nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 78, 021803 (2008)

    ADS  Google Scholar 

  • Wazwaz, Abdul-Majid.: Bright and dark optical solitons of the (2+1)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Optik 251, 168334 (2022)

    ADS  Google Scholar 

  • Weierstrass, K.: Mathematische. Werke V, New York, Johnson (1915)

  • Xiao, Yan, Bai, Xiaoqin, Lv, Tingting: Combined solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms in the heterogeneous optical fiber system. Optik 186, 315–320 (2019)

    ADS  Google Scholar 

  • Yang, D.Y., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Chen, S.S., Wei, C.C.: Darboux-dressing transformation, semi-rational solutions, breathers and modulation instability for the cubic-quintic nonlinear Schrödinger system with variable coefficients in a non-Kerr medium, twin-core nonlinear optical fiber or waveguide. Phys. Scr. 96, 045210 (2021)

    ADS  Google Scholar 

  • Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Physica D 238, 540–548 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  • Zayed, E.M., Al-Nowehy, A.G.: Many new exact solutions to the higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms using three different technique. Optik 143, 84–103 (2017)

    ADS  Google Scholar 

  • Zhanga, Weiguo, Guo, Yuli, Hong, Siyu, Ling, Xingqian: Exact solitary and periodic wave solutions of high-order nonlinear Schrödinger equation and their relationship with Hamilton energy. AIP Adv. 11, 085212 (2021)

    ADS  Google Scholar 

  • Zhao-Xiu, Han: New cnoidal and solitary wave solutions of coupled higher-order nonlinear Schrödinger system in nonlinear optics. Commun. Theor. Phys. 47, 10–14 (2007)

    ADS  MATH  Google Scholar 

  • Zhong, Du., Tian, Bo., Chai, Han-Peng., Yuan, Yu-Qiang.: Vector multi-rogue waves for the three-coupled fourth-order nonlinear Schrö dinger equations in an alpha helical protein. Commun. Nonlinear Sci. Numer. Simul. 67, 49–59 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Academy of Sciences President's International Fellowship Initiative (PIFI) under Grant No. 2023VMA0019, the National Key R&D Program of China under grants No. 2021YFA1400900, 2021YFA0718300, 2021YFA1402100, NSFC under grants Nos. 61835013, 12234012.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

EK: Conceptualization, Methodology, Software, Writing—original draft, Investigation, Data curation, Visualization, Writing—review and editing

Corresponding author

Correspondence to Emmanuel Kengne.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval and consent to participate

Not applicable

Consent for publication

The author has agreed and has given his consent for the publication of this research paper

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kengne, E. Dynamics of localized symmetric periodical waves in the non-Kerr media. Opt Quant Electron 55, 870 (2023). https://doi.org/10.1007/s11082-023-05152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05152-6

Keywords

Navigation