Skip to main content
Log in

Numerical investigation of performance of mirrored Bessel beam in turbulence

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We study scintillation and bit error rate performance of mirrored Bessel beams through turbulent atmosphere in this article. We benefit from numerical method to model the atmosphere. Since scintillation plays a vital role in optical wireless applications, reduction in this term provides better performance in these systems. Related with this, our results indicate that it is possible to decrease scintillation by increasing beam order to three when strong turbulent conditions are satisfied. In addition, we observe that argument of Bessel beam has more dominant role than beam order in moderate turbulence. Lastly, mirroring brings us a slight advantage in case of bit error rate. Results of this study can be beneficial for optical link designers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets are used in the present study.

References

  • Andrews, L.C.: Laser Beam Propagation Through Random Media, 2nd edn. SPIE, Washington (2005)

    Book  Google Scholar 

  • Andrews, L.C., Al-Habash, M.A., Hopen, C.Y., Phillips, R.L.: Theory of optical scintillation: Gaussian-beam wave model. Wave Random Media 11, 271–291 (2001). https://doi.org/10.1088/0959-7174/11/3/306

    Article  MATH  ADS  Google Scholar 

  • Arpali, S.A., Eyyuboglu, H.T., Baykal, Y.: Bit error rates for general beams. Appl. Opt. 47, 5971–5975 (2008). https://doi.org/10.1364/Ao.47.005971

    Article  ADS  Google Scholar 

  • Bayraktar, M.: Estimation of scintillation and bit error rate performance of sine hollow beam via random phase screen. Optik 188, 147–154 (2019). https://doi.org/10.1016/j.ijleo.2019.05.046

    Article  Google Scholar 

  • Bayraktar, M.: Scintillation and bit error rate calculation of Mathieu–Gauss beam in turbulence. J. Ambient Intell. Humaniz. Comput. (2020). https://doi.org/10.1007/s12652-020-02430-z

    Article  Google Scholar 

  • Bayraktar, M., Eyyuboglu, H.T.: Propagation properties of optical bottle beam in turbulence. Opt. Eng. (2019). https://doi.org/10.1117/1.Oe.58.3.036104

    Article  Google Scholar 

  • Bayraktar, M.: Comparıson of probabılıty of error performance for truncated bessel and bessel-gauss beams. Graduate School of Natural and Applied Sciences of Çankaya University, M.Sc. thesis (2015)

  • Boufalah, F., Dalil-Essakali, L., Ez-Zariy, L., Belafhal, A.: Introduction of generalized Bessel–Laguerre–Gaussian beams and its central intensity travelling a turbulent atmosphere. Opt. Quant. Electron. 50, 305–320 (2018)

    Article  Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Scintillation index analysis of generalized Bessel–Laguerre–Gaussian beam. Opt. Quant. Electron. 54(10), 616 (2022)

    Article  Google Scholar 

  • Chib, S., Belafhal, A.: Analyzing the spreading properties of vortex beam in turbulent biological tissues. Opt. Quant. Electron. 55, 98–115 (2023)

    Article  Google Scholar 

  • Chib, S., Dalil-Essakali, L., Belafhal, A.: Evolution of the partially coherent generalized flattened Hermite–Cosh-Gaussian beam through a turbulent atmosphere. Opt. Quant. Electron. 52, 484–500 (2020)

    Article  Google Scholar 

  • Chib, S., Dalil-Essakali, L., Belafhal, A.: Comparative analysis of some Schell-model beams propagating through turbulent atmosphere. Opt. Quant. Electron. 54, 175–191 (2022a)

    Article  Google Scholar 

  • Chib, S., Dalil-Essakali, L., Belafhal, A.: Effects of turbulent atmosphere on the spectral density of Bessel-modulated Gaussian Schell-model beams. Opt. Quant. Electron. 54, 468–479 (2022b)

    Article  Google Scholar 

  • Chib, S., Bayraktar, M., Belafhal, A.: Theoretical and computational study of a partially coherent laser beam in a marine environment. Phys. Scr. 98, 015513–015526 (2023)

    Article  ADS  Google Scholar 

  • Elmabruk, K., Eyyuboglu, H.T.: Analysis of flat-topped Gaussian vortex beam scintillation properties in atmospheric turbulence. Opt. Eng. (2019). https://doi.org/10.1117/1.Oe.58.6.066115

    Article  Google Scholar 

  • Eyyuboglu, H.T.: Scintillation analysis of hypergeometric Gaussian beam via phase screen method. Opt. Commun. 309, 103–107 (2013). https://doi.org/10.1016/j.optcom.2013.07.024

    Article  ADS  Google Scholar 

  • Eyyuboglu, H.T.: Bit error rate analysis of Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams with the help of random phase screens. Appl. Opt. 53, 3758–3763 (2014). https://doi.org/10.1364/Ao.53.003758

    Article  ADS  Google Scholar 

  • Eyyuboglu, H.T.: Correction of amplitude distortions for truncated Bessel beam and SER estimation for 4ASK. J. Mod. Opt. 63, 1438–1443 (2016). https://doi.org/10.1080/09500340.2016.1154197

    Article  ADS  Google Scholar 

  • Eyyuboglu, H.T., Bayraktar, M.: SNR bounds of FSO links and its evaluation for selected beams. J. Mod. Opt. 62, 1316–1322 (2015). https://doi.org/10.1080/09500340.2015.1037366

    Article  ADS  Google Scholar 

  • Eyyuboglu, H.T., Voelz, D., Xiao, X.F.: Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation. Appl. Opt. 52, 8032–8039 (2013). https://doi.org/10.1364/Ao.52.008032

    Article  ADS  Google Scholar 

  • Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications System and Channel Modelling with MATLAB®. CRC Press (2013)

    Google Scholar 

  • Glaser, A.K., Chen, Y., Liu, J.T.C.: Fractal propagation method enables realistic optical microscopy simulations in biological tissues. Optica 3, 861–869 (2016)

    Article  ADS  Google Scholar 

  • Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Effects of turbulent atmosphere on the propagation properties of vortex Hermite-cosine-hyperbolic-Gaussian beams. Opt. Quant. Electron. 53, 624–638 (2021)

    Article  Google Scholar 

  • Khannous, F., Belafhal, A.: A new study of turbulence effects in the marine environment on the intensity distributions of flat-topped Gaussian beams. Optik 127, 8194–8202 (2016a)

    Article  ADS  Google Scholar 

  • Khannous, F., Belafhal, A.: Hollow Gaussian beams scintillation in maritime atmospheric turbulence. Int. J. Opt. Photonics 2, 43–50 (2016b)

    Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: Li’s flattened Gaussian beams propagation in maritime atmospheric turbulence. Phys. Chem. News 73, 73–82 (2014)

    Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: On-axis average intensity of hypergeometric-Gaussian type propagating in a turbulent atmosphere. J. Mater. Environ. Sci. 6, 2550–2556 (2015)

    Google Scholar 

  • Lazrek, M., Hricha, Z., Belafhal, A.: Propagation properties of vortex cosine-hyperbolic-Gaussian beams through oceanic turbulence. Opt. Quant. Electron. 54, 172–185 (2021)

    Article  Google Scholar 

  • Nossir, N., Dalil-Essakali, L., Belafhal, A.: Behavior of the central intensity of generalized humbert-gaussian beams against the atmospheric turbulence. Opt. Quant. Electron. 53, 665 (2021)

  • Priyalakshmi, B., Mahalakshmi, K.: Performance analysis of video transmission in vertical-UWOC link in mid-sea oil rig IoT systems. J. Ambient Intell. Humaniz. Comput. (2020). https://doi.org/10.1007/s12652-020-02081-0

    Article  Google Scholar 

  • Saad, F., El Halba, E.M., Belafhal, A.: A theoretical study of the on-axis average intensity of generalized spiraling Bessel beams in a turbulent atmosphere. Opt. Quant. Electron. 49, 1–12 (2017)

    Article  Google Scholar 

  • Saadati-Sharafeh, F., Borhanifar, A., Porfirev, A.P., Amiri, P., Akhlaghi, E.A., Khonina, S.N., Azizian-Kalandaragh, Y.: The superposition of the Bessel and mirrored Bessel beams and investigation of their self-healing characteristic. Optik (2019). https://doi.org/10.1016/j.ijleo.2019.164057

    Article  Google Scholar 

  • Schmidt, J.D.: Numerical Simulation Optical Wave Propagation with Examples in MATLAB. SPIE (2010)

  • Sumathi, K., Balasaraswathi, M., Boopathi, C.S., Singh, M., Malhotra, J., Dhasarathan, V.: Design of 3.84 Tbps hybrid WDM–PDM based inter-satellite optical wireless communication (IsOWC) system using spectral efficient orthogonal modulation scheme. J. Ambient Intell. Humaniz. Comput. (2020). https://doi.org/10.1007/s12652-020-01691-y

    Article  Google Scholar 

  • Sun, R.D., Guo, L.X., Cheng, M.J., Li, J.T.: Multiple Random phase-screen simulation of scintillation effect of Bessel-Gaussian beam in ocean turbulence. In: 2018 12th International Symposium on Antennas, Propagation and Electromagnetic Theory (Isape) (2018)

  • Voelz, D.: Computational Fourier Optics: A MATLAB Tutorial. SPIE Press, Belligham (2011)

    Book  Google Scholar 

  • Zhang, Y.L., Zhou, X.X., Yuan, X.H.: Performance analysis of sinh-Gaussian vortex beams propagation in turbulent atmosphere. Opt. Commun. 440, 100–105 (2019). https://doi.org/10.1016/j.optcom.2019.02.007

    Article  ADS  Google Scholar 

Download references

Funding

No funding is received from any organization for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors performed simulations, data collection and analysis and commented the present version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mert Bayraktar.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Consent for publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Consent to participate

Informed consent was obtained from all authors.

Ethical approval

This article does not contain any studies involving animals or human participants performed by any of the authors. We declare that this manuscript is original, and is not currently considered for publication elsewhere. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, M., Chib, S. & Belafhal, A. Numerical investigation of performance of mirrored Bessel beam in turbulence. Opt Quant Electron 55, 814 (2023). https://doi.org/10.1007/s11082-023-05100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05100-4

Keywords

Navigation