Skip to main content
Log in

Synthesis and characterization of Au–ZnO nanorods growth by CVD method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

On silicon (100) surface substrates, single-crystal ZnO nanorods (NRs) were produced in a CVD (Chemical vabour deposition) home-made reactor with the help of a catalytic Au-seeds layer. Si substrates were coated with an Au- catalyst layer of 20 nm thickness using direct current sputtering (DC sputtering). Au-catalyst layer plays a pivotal role in synthesizing nanostructures by VLS (Vapour–Liquid–Solid) process. Zinc powder [0.2 g] was used as a source, and silicon (100) of 1.0 × 1.0 cm2 area was used as a substrate. We utilized a mixture of argon/oxygen gases (40/10 flow rate) with 700 °C growth temperature for 1 h to ZnO NRs formation. The Au–ZnO NRs were characterized by XRD (X-ray diffraction), AFM (Atomic force microscopy), and FESEM (Field emission scanning electron microscopy) techniques. The results demonstrate that the Au–ZnO NRs are single crystalline and have a hexagonal structure (wurtzite) with a (101) preferred orientation. The sharp and robust diffractions from ZnO NRs confirm that the CVD thermal-grown ZnO NRs have good crystallinity and high purity. The AFM pictures showed that the average particle size of Au–ZnO NRs is 45.31 nm, which is in reasonable agreement with the crystallite sizes estimated from the XRD pattern. The FESEM confirm that the grown ZnO NRs are hexagonal wurtzite NRs. As a whole, Au–ZnO NRs ranged in size from 1.6 to 1.738 μm in length and 250–300 nm in diameter on average. The Au catalyst seed layer acts as a nucleation layer that draws Zn2+ and O ions to the substrate’s surface and serves as an active site for the growth of ZnO NRs. Those results were accomplished with discussion of the mechanism and model of growth for Au–ZnO NRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Ali, M.N., Salman, S.A., Dawood, M.O.: The growth mechanism of ZnO nanorods and the effects of growth conditions. NVEO-NAT. VOLATILES Essent. OILS J. NVEO 8(6), 1611–1620 (2021)

  • Alsultany, F.H., Ghazia, R.A.: Seed/catalyst-free growth of 2D and 3D ZnO nanostructures on glass substrate by thermal evaporation method: effects of carrier gas flow rate. Al-Mustansiriyah J. Sci. 29(3), 129–132 (2018)

    Google Scholar 

  • Alwan, R.M., et al.: Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Nanosci. Nanotechnol. 5(1), 1–6 (2015)

    MathSciNet  Google Scholar 

  • Aysa, N.H., Al-Maamori, M.H., Al-Maamori, N.A.A.: Preparation and surface modification of zinc oxide nanoparticles. J. Babylon Univ. Appl. Sci. 25, 497–503 (2017)

    Google Scholar 

  • Bhushan, B.: Surface roughness analysis and measurement techniques. In: Modern Tribology Handbook, Two Volume Set, pp. 79–150. CRC Press (2000)

  • Chen, J.-Y., Pan, C.-J., Tsao, F.-C., Kuo, C.-H., Chi, G.-C., Pong, B.-J., ... & Pearton, S.-J.: Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst. Vacuum, 83(7), 1076–1079 (2009) https://doi.org/10.1016/j.vacuum.2009.02.001

  • Chou, H.-T., Hsu, H.-C.: The effect of annealing temperatures to prepare ZnO seeds layer on ZnO nanorods array/TiO2 nanoparticles photoanode. Solid-State Electron. 116, 15–21 (2016)

    ADS  Google Scholar 

  • Chu, Y.-L., Liu, Y.-H., Chu, T.-T., Young, S.-J.: Improved UV-sensing of Au-decorated ZnO nanostructure MSM photodetectors. IEEE Sens. J. 22(6), 5644–5650 (2022)

    ADS  Google Scholar 

  • Cruz-Vázquez, C., Bernal, R., Burruel-Ibarra, S.E., Grijalva-Monteverde, H., Barboza-Flores, M.: Thermoluminescence properties of new ZnO nanophosphors exposed to beta irradiation. Opt. Mater. (amst) 27(7), 1235–1239 (2005)

    ADS  Google Scholar 

  • Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction, p. 388. Prentice Hall, Up Saddle River, NJ (2001)

    Google Scholar 

  • Daniel, G.P., Justinvictor, V.B., Nair, P.B., Joy, K., Koshy, P., Thomas, P.V.: Effect of annealing temperature on the structural and optical properties of ZnO thin films prepared by RF magnetron sputtering. Phys. B Condens. Matter 405(7), 1782–1786 (2010)

    ADS  Google Scholar 

  • Dinesh, V.P., et al.: Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@ Ag core–shell nanorods. RSC Adv. 4(103), 58930–58940 (2014)

    ADS  Google Scholar 

  • Faisal, A.D.: Optimization of CVD parameters for long ZnO NWs grown on ITO/glass substrate. Bull. Mater. Sci. 39, 1635–1643 (2016)

    Google Scholar 

  • Faisal, A.D., Dawood, M.O., Hussein, H.H., Hassoon, K.I.: Performance of ph sensor electrode based on ZnO NRs on Fto-glass substrate. Surf. Rev. Lett. 27(08), 1950198 (2020)

    ADS  Google Scholar 

  • Gadelmawla, E.S., Koura, M.M., Maksoud, T.M.A., Elewa, I.M., Soliman, H.H.: Roughness parameters. J. Mater. Process. Technol. 123(1), 133–145 (2002)

    Google Scholar 

  • Gupta, A.K., Kashyap, V., Gupta, B.K., Nandi, S.P., Saxena, K., Khare, N.: Synthesis of ZnO nanorods by electrochemical deposition method and its antibacterial activity. J. Nanoeng. Nanomanufacturing 3(4), 348–352 (2013)

    Google Scholar 

  • Hahn, Y.-B.: Zinc oxide nanostructures and their applications. Korean J. Chem. Eng. 28, 1797–1813 (2011)

    Google Scholar 

  • Han, S. K., et al.: Growth and optical properties of ZnO nanorods prepared through hydrothermal growth followed by chemical vapor deposition. In: 2010 3rd International Nanoelectronics Conference (INEC), pp. 1098–1099. IEEE (2010)

  • Hana, H.E.S.P.D.: Adsorption Study of the Interaction Between Zinc Oxide Nanoparticles with Albumin and Creatinine. University of Kerbala, Karbala (2019)

    Google Scholar 

  • Hejazi, S.R., Hosseini, H.R.M.: A diffusion-controlled kinetic model for growth of Au-catalyzed ZnO nanorods: theory and experiment. J. Cryst. Growth 309(1), 70–75 (2007)

    ADS  Google Scholar 

  • Huang, B., Zeng, W., Li, Y.: Synthesis of ZIF-8 coating on ZnO nanorods for enhanced gas-sensing performance. Chemosensors 10(8), 297–312 (2022)

    Google Scholar 

  • Hughes, W.L., Wang, Z.L.: Formation of piezoelectric single-crystal nanorings and nanobows. J. Am. Chem. Soc. 126(21), 6703–6709 (2004)

    Google Scholar 

  • Ismail, M.A., Taha, K.K., Modwi, A., Khezami, L.: ZnO nanoparticles: Surface and X-ray profile analysis. J. Ovonic Res. 14(5), 381–393 (2018)

    Google Scholar 

  • Kaiser, A., Ceja, E.T., Huber, F., Herr, U., Thonke, K.” Highly sensitive H2S sensing with gold and platinum surface-modified ZnO nanowire ChemFETs. In: Proceedings, p. 7. MDPI (2020)

  • Kar, S., Pal, B.N., Chaudhuri, S., Chakravorty, D.: One-dimensional ZnO nanostructure arrays: synthesis and characterization. J. Phys. Chem. B 110(10), 4605–4611 (2006)

    Google Scholar 

  • Kim, H.-M., Park, J.-H., Lee, S.-K.: Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor. Sci. Rep. 9(1), 1–9 (2019)

    Google Scholar 

  • Kołodziejczak-Radzimska, A., Jesionowski, T.: Zinc oxide—from synthesis to application: a review. Materials (basel) 7(4), 2833–2881 (2014)

    ADS  Google Scholar 

  • Kong, Y.C., Yu, D.P., Zhang, B., Fang, W., Feng, S.Q.: Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78(4), 407–409 (2001)

    ADS  Google Scholar 

  • Kononenko, O.V., Redkin, A.N., Baranov, A.N., Panin, G.N., Kovalenko, A.A., Firsov, A.A.: ZnO nanorods: synthesis by catalyst-free CVD and thermal growth from salt composites and application to nanodevices. Nanorods Nanotechnol. Nanomater. 51–74 (2012). https://doi.org/10.5772/34936

  • Kumar, R.T.R., et al.: Growth of ZnO nanostructures on Au-coated Si: influence of growth temperature on growth mechanism and morphology. J. Appl. Phys. 104(8), 84309 (2008)

    Google Scholar 

  • Kumar, S., Sahare, P.D., Kumar, S.: Optimization of the CVD parameters for ZnO nanorods growth: its photoluminescence and field emission properties. Mater. Res. Bull. 105, 237–245 (2018)

    Google Scholar 

  • Kumbhakar, P., Singh, D., Tiwary, C.S., Mitra, A.K.: Chemical synthesis and visible photoluminescence emission from monodispersed ZnO nanoparticles. Chalcogenide Lett. 5(12), 387–394 (2008)

    Google Scholar 

  • Levitt, A.P.: VLS Growth Mechanism of Crystal Growth in Whisker Technology. Wiley-Interscience, New York (1971)

    Google Scholar 

  • Li, Y., et al.: Au-catalyzed growth processes and luminescence properties of ZnO nanopillars on Si. J. Appl. Phys. 99(5), 54307 (2006)

    Google Scholar 

  • Lim, Y.S., Park, J.W., Kim, M.S., Kim, J.: Effect of carbon source on the carbothermal reduction for the fabrication of ZnO nanostructure. Appl. Surf. Sci. 253(3), 1601–1605 (2006)

    ADS  Google Scholar 

  • Lockett, A.M., Thomas, P.J., O’Brien, P.: Influence of seeding layers on the morphology, density, and critical dimensions of ZnO nanostructures grown by chemical bath deposition. J. Phys. Chem. C 116(14), 8089–8094 (2012)

    Google Scholar 

  • Malik, S., Muhammad, K., Waheed, Y.: Nanotechnology: a revolution in modern industry. Molecules 28(2), 661–686 (2023)

    Google Scholar 

  • Mazhdi, M., Hossein, K.P.: Structural characterization of ZnO and ZnO: Mn nanoparticles prepared by reverse micelle method Int. J. Nano Dim. 2(4), 233–240 (2012)

  • Mirzaei, H., Darroudi, M.: Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int. 43(1), 907–914 (2017)

    Google Scholar 

  • Navas, M.P., Soni, R.K., Tarasenka, N., Tarasenko, N.: Temperature and solution assisted synthesis of anisotropic ZnO nanostructures by pulsed laser ablation. Appl. Surf. Sci. 414, 413–423 (2017)

    ADS  Google Scholar 

  • Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978–982 (1939)

    MATH  ADS  Google Scholar 

  • Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer (guildf) 49(15), 3187–3204 (2008)

    Google Scholar 

  • Purica, M., Budianu, E., Rusu, E., Danila, M., Gavrila, R.: Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films 403, 485–488 (2002)

    ADS  Google Scholar 

  • Rosli, N., et al.: Random lasing emission of ZnO nanorods from different seeding thickness. In: Journal of Physics: Conference Series, p. 12018. IOP Publishing (2022)

  • Rusli, N.I., Tanikawa, M., Mahmood, M.R., Yasui, K., Hashim, A.M.: Growth of high-density zinc oxide nanorods on porous silicon by thermal evaporation. Materials (basel) 5(12), 2817–2832 (2012)

    ADS  Google Scholar 

  • Saeed, N.M.: Preparation and properties of nanostructure zinc oxide thin films. Iraqi J. Phys. 7(8), 75–81 (2009)

    MathSciNet  Google Scholar 

  • Sangpour, P., Roozbehi, M., Akhavan, O., Moshfegh, A.Z.: ZnO nanowires from nanopillars: influence of growth time. Curr. Nanosci. 5(4), 479–484 (2009)

    ADS  Google Scholar 

  • Schulz, H., Thiemann, K.H.: Structure parameters and polarity of the wurtzite type compounds Sic—2H and ZnO. Solid State Commun. 32(9), 783–785 (1979)

    ADS  Google Scholar 

  • Shi, J., Zhang, J., Yang, L., Qu, M., Qi, D., Zhang, K.H.L.: Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. Adv. Mater. 33(50), 2006230 (2021)

    Google Scholar 

  • Siegel, J., Lyutakov, O., Rybka, V., Kolská, Z., Švorčík, V.: Properties of gold nanostructures sputtered on glass. Nanoscale Res. Lett. 6, 1–9 (2011)

    Google Scholar 

  • Singh, A., Vishwakarma, H.L.: Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation. Mater. Sci. 33(4), 751–759 (2015)

    Google Scholar 

  • Soleimanpour, A.M., Khare, S.V., Jayatissa, A.H.: Enhancement of hydrogen gas sensing of nanocrystalline nickel oxide by pulsed-laser irradiation. ACS Appl. Mater. Interfaces 4(9), 4651–4657 (2012)

    Google Scholar 

  • Song, J., Lim, S.: Effect of seed layer on the growth of ZnO nanorods. J. Phys. Chem. C 111(2), 596–600 (2007)

    Google Scholar 

  • Sun, Y., et al.: The applications of morphology controlled ZnO in catalysis. Catalysts 6(12), 188 (2016)

    Google Scholar 

  • Tseng, Y.-K., Hsu, H.-C., Hsieh, W.-F., Liu, K.-S., Chen, I.-C.: Two-step oxygen injection process for growing ZnO nanorods. J. Mater. Res. 18(12), 2837–2844 (2003)

    ADS  Google Scholar 

  • Wahab, R., et al.: Zinc oxide nanostructures and their applications. Intell. Nanomater. Process. Prop. Appl. 28, 183–212 (2012)

    Google Scholar 

  • Wang, H., et al.: Selective growth of vertical-aligned ZnO nanorod arrays on Si substrate by catalyst-free thermal evaporation. Nanoscale Res. Lett. 3, 309–314 (2008)

    ADS  Google Scholar 

  • Yi, G.-C., Wang, C., Park, W.I.: ZnO nanorods: synthesis, characterization and applications. Semicond. Sci. Technol. 20(4), S22–S34 (2005)

    Google Scholar 

  • Young, S.-J., Chu, Y.-L.: Hydrothermal synthesis and improved CH3OH-sensing performance of ZnO nanorods with adsorbed Au NPs. IEEE Trans. Electron Devices 68(4), 1886–1891 (2021)

    ADS  Google Scholar 

  • Young, S.-J., Lai, L.T.: Investigation of a highly sensitive Au nanoparticle-modified ZnO nanorod humidity sensor. IEEE Trans. Electron Devices 68(2), 775–779 (2021)

    ADS  Google Scholar 

  • Young, S.-J., Chu, Y.-J., Chen, Y.-L.: Enhancing pH sensors performance of ZnO nanorods with Au nanoparticles adsorption. IEEE Sens. J. 21(12), 13068–13073 (2021)

    ADS  Google Scholar 

  • Yu, X., Marks, T.J., Facchetti, A.: Metal oxides for optoelectronic applications. Nat. Mater. 15(4), 383–396 (2016)

    ADS  Google Scholar 

  • Zak, A.K., Majid, W.H.A., Abrishami, M.E., Yousefi, R.: X-ray analysis of ZnO nanoparticles by Williamson-hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the current study, including a practical part, laboratory measurements, and results analysis. Material preparation, data collection, and analysis were done by SJM, BBK, and MOD. The first draft of the manuscript was written by SJM and all authors have commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sabah Jameel Mezher.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezher, S.J., Kadhim, B.B. & Dawood, M.O. Synthesis and characterization of Au–ZnO nanorods growth by CVD method. Opt Quant Electron 55, 845 (2023). https://doi.org/10.1007/s11082-023-05072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05072-5

Keywords

Navigation