Skip to main content
Log in

Graphene based quad port terahertz MIMO antenna for wireless indoor communications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This research paper presents, an octagonal shaped graphene based terahertz patch antenna is designed for indoor communications. For a unit cell, a single graphene layer with a thickness of 10 nm has been layered over a quartz (SiO4) substrate with a thickness of 100 µm to increase the effectiveness of the multiple-input and multiple-output (MIMO) antenna. The MIMO antenna is chosen to operate at a frequency of 0.3 THz. For a quad-port MIMO configuration, the element cells have been arranged orthogonally. The total cross-sectional area of the terahertz (THz) MIMO antenna is 1325 × 1325 µm2. The suggested MIMO antenna device achieves a bandwidth of 113 GHz over a frequency range of 0.257–0.370 THz. Moreover, the mutual coupling coefficient is less than − 15 dB. The designed THz MIMO antenna’s diversity performance is analyzed and the obtained diversity matrices are the diversity gain (DG) (< 9.96 dB), envelope correlation coefficient (ECC) (< 0.01), channel capacity loss (CCL) (< 0.35 bps/Hz), and total active reflection coefficient (TARC) (< − 10 dB), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Ahmad, I., Ullah, S., Ullah, S., Habib, U., Ahmad, S., Ghaffar, A., Alibakhshikenari, M., Khan, S., Limiti, E.: Design and analysis of a photonic crystal based planar antenna for THz applications. Electronics 10(16), 1941 (2021)

    Google Scholar 

  • Al-Azza, A., Malalla, N.A., Harackiewicz, F.J., Han, K.: Stacked conical-cylindrical hybrid dielectric resonator antenna for improved ultrawide bandwidth. Prog. Electromagn. Res. Lett. 79, 79–86 (2018)

    Google Scholar 

  • Bahl, I.J., Bhartia, P.: Microstrip Antenna. Artech House, Dedham (1980)

    Google Scholar 

  • Bala, R., Singh, R., Marwaha, A., Marwaha, S.: Wearable graphene based curved patch antenna for medical telemetry applications. Appl. Comput. Electromagn. Soc. J. (ACES) 31, 543–550 (2016)

    Google Scholar 

  • Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley (1989)

    Google Scholar 

  • Bhuyan, M.K., Rodriguez-Devora, J.I., Fraser, K., Tseng, T.L.B.: Silicon substrate as a novel cell culture device for myoblast cells. J. Biomed. Sci. 21, 1–5 (2014)

    Google Scholar 

  • Cao, Y.S., Jiang, L.J., Ruehli, A.E.: An equivalent circuit model for graphene-based terahertz antenna using the PEEC method. IEEE Trans. Antennas Prop. 64, 1385–1393 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  • Chae, S.H., Oh, S., Park, S.-O.: Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas Wirel. Propag. Lett. 6, 122–125 (2007)

    ADS  Google Scholar 

  • Chen, J., Guo, Y., Wen, Y., Huang, L., Xue, Y., Geng, D., Bin, Wu., Luo, B., Gui, Yu., Liu, Y.: Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv. Mater. 25(7), 992–997 (2013)

    Google Scholar 

  • Cherry, S.: Edholm’s law of bandwidth. IEEE Spectr. 41(7), 58–60 (2004)

    Google Scholar 

  • Dash, S., Patnaik, A.: Material selection for THz antenna. Microw. Opt. Technol. Lett. 60(5), 1183–1187 (2017)

    Google Scholar 

  • Dash, S., Patnaik, A.: Impact of silicon-based substrates on graphene THz antenna. Physica E Low-Dimens. Syst. Nanostruct. 126, 114479 (2021)

    Google Scholar 

  • Dash, S., Patnaik, A., Kaushik, B.K.: Performance enhancement of graphene plasmonic nanoantennas for THz communication. IET Microw. Antennas Propag. 13(1), 71–75 (2019)

    Google Scholar 

  • Elayan, H., Amin, O., Shihada, B., Shubair, R.M., Alouini, M.-S.: Terahertz band: the last piece of RF spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 1, 1–32 (2019)

    Google Scholar 

  • Gotra, S., Varshney, G., Pandey, V.S., Yaduvanshi, R.S.: Super-wideband multi-input–multi-output dielectric resonator antenna.". IET Microw. Antennas Propag. 14(1), 21–27 (2020)

    Google Scholar 

  • Gumi, K., Ohno, Y., Maehashi, K., Inoue, K., Matsumoto, K.: Direct synthesis of graphene on SiO2 substrates by transfer-free processes. Jpn. J. Appl. Phys. 51(6S), 06FD12 (2012)

    Google Scholar 

  • Hammerstad, E.O.: Equations for microstrip circuit design. In: 1975 5th European Microwave Conference, IEEE, pp. 268–272 (1975)

  • Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)

    ADS  Google Scholar 

  • Iqbal, A., Bouazizi, A., Kundu, S., Elfergani, I., Rodriguez, J.: ‘Dielectric resonator antenna with top loaded parasitic strip elements for dual-band operation. Microw. Opt. Technol. Lett. 61(9), 2134–2140 (2019)

    Google Scholar 

  • Juang, Z.-Y., Chih-Yu, Wu., Lo, C.-W., Chen, W.-Y., Huang, C.-F., Hwang, J.-C., Chen, F.-R., Leou, K.-C., Tsai, C.-H.: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47(8), 2026–2031 (2009)

    Google Scholar 

  • Kavitha, S., Sairam, K.V., Singh, A.: Graphene plasmonic nano-antenna for terahertz communication. SN Appl. Sci. 4(4), 114 (2022)

    Google Scholar 

  • Koppens, F.H.L., Chang, D.E., Javier García de Abajo, F.: Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11(8), 3370–3377 (2011)

    ADS  Google Scholar 

  • Kushwaha, R.K., Karuppanan, P., Malviya, L.D.: Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Physica B Condens. Matter 545, 107–112 (2018)

    ADS  Google Scholar 

  • Manteghi, M., Rahmat-Samii, Y.: Broadband characterization of the total active reflection coefficient of multiport antennas. In: IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Science Meeting (Cat. No. 03CH37450), vol. 3, pp. 20–23. IEEE (2003)

  • Mumtaz, S., Jornet, J.M., Aulin, J., Gerstacker, W.H., Dong, X., Ai, B.: Terahertz communication for vehicular networks. IEEE Trans. Veh. Technol. 66(7), 5617–5625 (2017)

    Google Scholar 

  • Ram, G.C., Sambaiah, P., Yuvaraj, S., Kartikeyan, M.V.: Tunable bandstop filter using graphene in terahertz frequency band. AEU Int. J. Electron. Commun. 144, 154047 (2022)

    Google Scholar 

  • Rao, P.S.: Wideband mimo antenna with reduced mutual coupling. Analog Integr. Circ. Sig. Process 114(3), 451–458 (2023)

    Google Scholar 

  • Rappaport, T.S., Xing, Y., Kanhere, O., Shihao, Ju., Madanayake, A., Mandal, S., Alkhateeb, A., Trichopoulos, G.C.: Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019)

    Google Scholar 

  • Salamin, M.A., Das, S., Madhav, B.T.P., Lakrit, S., Roy, A., Zugari, A.: A miniaturized printed UWB antenna with dual notching for Xb and and aeronautical radio navigation applications. Telkomnika (telecommun. Comput. Electron. Control) 18(6), 2868–2877 (2020)

    Google Scholar 

  • Sanyal, R., Sarkar, P.P., Sarkar, S.: Octagonal nut shaped monopole UWB antenna with sextuple band notched characteristics. AEU Int. J. Electron. Commun. 110, 152833 (2019)

    Google Scholar 

  • Saxena, G., Awasthi, Y.K., Jain, P.: High isolation and high gain super-wideband (0.33–10 THz) MIMO antenna for THz applications. Optik 223, 165335 (2020)

    ADS  Google Scholar 

  • Shamim, S.M., Das, S., Hossain, M.A., Madhav, B.T.P.: Investigations on graphene-based ultra-wideband (UWB) microstrip patch antennas for terahertz (THz) applications. Plasmonics 16(5), 1623–1631 (2021)

    Google Scholar 

  • Singh, A., Singh, S.: A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed THz applications. Photonics Nanostruct. Fundam. Appl. 14, 52–62 (2015)

    ADS  Google Scholar 

  • Singh, M., Rai, J., Mrwaha, A.: Design of a triangular patch microstrip antenna on a substrate of photonic crystal material. Int. J. Comput. Appl. 975, 8887 (2014)

    Google Scholar 

  • Suemitsu, M., Fukidome, H.: Epitaxial graphene on silicon substrates. J. Phys. D Appl. Phys. 43(37), 374012 (2010)

    Google Scholar 

  • Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007)

    ADS  Google Scholar 

  • Toqeer, I., Ghaffar, A., Naz, M.Y., Sultana, B.: Characteristics of dispersion modes supported by Graphene Chiral Graphene waveguide. Optik 186, 28–33 (2019)

    ADS  Google Scholar 

  • Varshney, G., Gotra, S., Pandey, V.S., Yaduvanshi, R.S.: Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Commun. Netw. 21, 100246 (2019)

    Google Scholar 

  • Vijayalakshmi, K., Kanimozhi Selvi, C.S., Sapna, B.: Novel tri-band series fed microstrip antenna array for THz MIMO communications. Opt. Quantum Electron. 53, 1–13 (2021)

    Google Scholar 

  • Votis, C., Tatsis, G., Kostarakis, P.: Envelope correlation parameter measurements in a MIMO antenna array configuration. Int. J. Commun. Netw. Syst. Sci. 3(4), 350 (2010)

    Google Scholar 

  • Wang, Q., Zhang, Y.: Design of a compact UWB antenna with triple band-notched characteristics. Int. J. Antennas Propag. 2014 (2014).

  • Woo, D.-J., Lee, T.-K., Lee, J.-W., Pyo, C.-S., Choi, W.-K.: Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor. IEEE Trans. Microw. Theory Tech. 54(6), 2840–2847 (2006)

    ADS  Google Scholar 

  • Xu, Z., Dong, X., Bornemann, J.: Design of a reconfigurable MIMO system for THz communications based on graphene antennas. IEEE Trans. Terahertz Sci. Technol. 4(5), 609–617 (2014)

    ADS  Google Scholar 

  • Yang, Z., Rongguo, Lu., Wang, Y., Cai, S., Zhang, Y., Wang, X., Liu, Y.: A fabrication-friendly graphene-based polarization insensitive optical modulator. Optik 182, 1093–1098 (2019)

    ADS  Google Scholar 

  • Zhou, X., Zhang, T., Chen, L., Hong, W., Li, X.: A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J. Lightwave Technol. 32(21), 3597–3601 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

All authors are appreciative to D.S.T FIST, Govt. of India, and SRMIST for their backing of this research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

GKP, RRT, and SM conceived the experiment, GKP conducted the experiment, RRT, and SM analysed and interpreted the results. All authors fine-tuned and reviewed the manuscript.

Corresponding author

Correspondence to Rama Rao Thipparaju.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

Data will be made available on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, G.K., Thipparaju, R.R. & Mondal, S. Graphene based quad port terahertz MIMO antenna for wireless indoor communications. Opt Quant Electron 55, 746 (2023). https://doi.org/10.1007/s11082-023-05050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05050-x

Keywords

Navigation