Skip to main content
Log in

First principle study of the optoelectronic properties of pyrazinamide drug

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The optoelectronic properties of pyrazinamide (PZA) in a monoclinic crystal structure were investigated by the full potential linear augmented plane wave (FP-LAPW) method. The Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) and the Tran-Blaha modified Becke Johnson (TB-mBJ) potential were applied to calculate exchange correlation potentials. Obtained indirect band gaps of PZA are 2.25 and 3.85 eV by PBE-GGA and TB-mBJ, respectively. Calculated effective mass of carriers are \(m_{h}^{*} = 0.301 m_{0}\) and \(m_{e}^{*} = 0.117 m_{0}\) along the Γ–M direction. The strong covalent bond nature of N–C and O–C are seen around the Fermi level in the density of states spectra. The anisotropic optical properties are analyzed at the x, y, and z directions. The maximum polarization of PZA is observed in the 3.98 and 5.12 eV. Obtained optical gaps are 3.66, 3.60, and 3.65 eV at the x, y, and z-directions, respectively. At the ultraviolet region, the small absorption and the maximum reflectivity are observed at the x and z directions. The calculated absorption spectrum of PZA is in good agreement with the experimental data. Based on the obtained optical absorption edge by Tauc’s relation and light effective mass of electrons as well as high electron mobility, it is predicted that PZA is suitable for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Wien2k software.

References

  • Agdaa, F., Sadkib, H., Zgouc, H., Bennanib, M.N., Taleba, M., Hamidid, M., Bouachrinee, M.: New organic materials based on TTF-pyrazine for photovoltaic applications: Quantum chemical investigations. J. Comput. Methods Mol. Des. 4(3), 52–60 (2014)

    Google Scholar 

  • Aliabad, H. A., Rahnamaye, M., Iftikhar Ahmad, G., Saeed, M. A.: Ab initio calculations of structural, optical and thermoelectric properties for CoSb3 and ACo4Sb12 (A= La, Tl and Y) compounds. Comput. Mater. Sci. 65, 509–519 (2012).

  • Al-Otaibi, J.S., Mary, Y.S., Mary, Y.S., Panicker, C.Y., Thomas, R.: Cocrystals of pyrazinamide with p-toluenesulfonic and ferulic acids: DFT investigations and molecular docking studies. J. Mol. Struct. 1175, 916–926 (2019)

    ADS  Google Scholar 

  • Al-Otaibi, J.S., et al.: Hybrid and bioactive cocrystals of pyrazinamide with hydroxybenzoic acids: detailed study of structure, spectroscopic characteristics, other potential applications and noncovalent interactions using SAPT. J. Mol. Struct. 1202, 127316 (2020)

    Google Scholar 

  • Ammouchi, N., et al.: DFT computations and molecular dynamics investigations on conformers of some pyrazinamide derivatives as corrosion inhibitors for aluminum. J. Mol. Liq. 300, 112309 (2020)

    Google Scholar 

  • Asadpour-Zeynali K., Saeb E.: Simultaneous spectrophotometric determination of rifampicin, isoniazid and pyrazinamide in a single step. Iran. J. Pharma. Res.: IJPR. 15(4), 713 (2016).

  • Azadparvar, M., Kheirabadi, M., Aliabad, H.A.R.: Fluorinated derivatives of tetrahydroaltersolanol molecule on COVID-19, HIV, and HTLV protease by DFT and molecular docking approaches. J. Mol. Model. 28(11), 350 (2022a)

    Google Scholar 

  • Azadparvar, M., Aliabad, H.A.R., Rezaei-Seresht, E., Mirzaei, M.: Effect of fluorine substitution on the photobiological and electronic properties of resveratrol crystal structure: A first-principles study. J. Photochem. Photobiol. A 429, 113941 (2022b)

    Google Scholar 

  • Baddeley, A., Dias, H., Falzon, D.: WHO Report 2011: Global Tuberculosis Control. World Health Organization, Geneva (2011)

    Google Scholar 

  • Benchehima, M., Hachemi, M.H., Abid, H.: Theoretical studies of optoelectronic properties of AlP1-xBix ternaries: Promising light sources for fiber optic communications. Radiat. Phys. Chem. 202, 110591 (2023)

    Google Scholar 

  • Blaha, P., Karlheinz S., Georg KH M., Dieter K., Joachim L.: "wien2k." An augmented plane wave+ local orbitals program for calculating crystal properties 60 (2001).

  • Bussolotti, F., Yang, J., Yamaguchi, T., Yonezawa, K., Sato, K., Matsunami, M., Tanaka, K., Nakayama, Y., Ishii, H., Ueno, N., Kera, S.: Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors. Nat. Commun. 8(1), 173 (2017).

  • Cao, H., et al.: Tunable electronic properties and optical properties of novel stanene/ZnO heterostructure: First-principles calculation. Comput. Mater. Sci. 139, 179–184 (2017)

    Google Scholar 

  • Coropceanu, V., Li, Y., Yi, Y., Zhu, L., Brédas, J.L.: Intrinsic charge transport in single crystals of organic molecular semiconductors: A theoretical perspective. MRS Bull. 38(1), 57–64 (2013)

    Google Scholar 

  • Das, P. P., Guzzinati, G., Coll, C., Gomez Perez, A., Nicolopoulos, S., Estrade, S., et. al: Reliable characterization of organic & pharmaceutical compounds with high resolution monochromated EEL spectroscopy. Polymers, 12(7), 1434 (2020).

  • De Paiva, R., de Oliveira, C., Kaschny, J.R.: LiZnN filled-tetrahedral compound: A first-principles study of the electronic, optical and effective mass properties. J. Solid State Chem. 280, 120974 (2019)

    Google Scholar 

  • Dhayal, V., Hashmi, S. Z., Kumar, U., Choudhary, B. L., Kuznetsov, A. E., Dalela, S., et. al: Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable Chitosan-GO polymer nanocomposites. J. Mater. Sci. 55, 14829–14847 (2020).

  • Espinosa-Mansilla A., Valenzuela M.A., de la Peña A.M., Salinas F., Cañada F.C. Comparative study of partial least squares and a modification of hybrid linear analysis calibration in the simultaneous spectrophotometric determination of rifampicin, pyrazinamide and isoniazid. Anal. Chimica Acta. 19, 427(1), 129–36 (2001).

  • Gao, L., Ping, H., Yingzhen, H., Yingjie, H., Jing, Z.: Synthesis and crystal structure of pyrazine-based one-dimensional perovskite compound. Mater. Lett.134099 (2023).

  • Giorgi, G., Fujisawa, J.I., Segawa, H., Yamashita, K.: Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. The Journal of Physical Chemistry Letters 4(24), 4213–4216 (2013)

    Google Scholar 

  • Grae, C.F.O., Silva, G.B., Äuesch, F.N., Zuppiroli, L.: Transport and recombination in organic light-emitting diodes studied by electrically detected magnetic resonance. Eur. Phys. J. 18, 21–28 (2005)

    Google Scholar 

  • Harris, J. S., Yuen, H., Bank, S., Wistey, M., Lordi, V., Gugov, T., Bae, H., & Goddard, L.: MBE growth and characterization of long wavelength dilute nitride III–V alloys. In Dilute nitride semiconductors (pp. 1–92). Elsevier (2005).

  • He, L., Duan, L., Qiao, J., Zhang, D.Q., Wang, L.D., Qiu, Y.: Efficient blue-green and white organic light-emitting diodes with a small-molecule host and cationic iridium complexes as dopants. Appl Phys. a100, 1035–1040 (2010).

  • Hosseini, S. M., Rahnamaye Aliabad, H. A. , Kompany, A.: First-principles study of the optical properties of pure α-Al2O3 and La aluminates.  Euro. Phys. J. B-Condensed Matter Complex Syst. 43, 439–444 (2005).

  • Imran, M., Khalid, M., Jawaria, R., Ali, A., Asghar, M.A., Shafiq, Z., Assiri, M.A., Lodhi, H.M., Braga, A.A.C.: Exploration of photophysical and nonlinear properties of salicylaldehyde-based functionalized materials: a facile synthetic and DFT approach. ACS Omega 6(49), 33914–33922 (2021)

    Google Scholar 

  • Khalid, M., Lodhi, H.M., Khan, M.U., Imran, M.: Structural parameter-modulated nonlinear optical amplitude of acceptor–π–D–π–donor-configured pyrene derivatives: A DFT approach. RSC Adv. 11(23), 14237–14250 (2021)

    ADS  Google Scholar 

  • Khan, I., Iftikhar, A., Zhang, D., Rahnamaye Aliabad, H.A., Jalali Asadabadi, S.: Electronic and optical properties of mixed Be-chalcogenides. J. Phys. Chem. Solids 74(2), 181–188 (2013).

  • Khichar, K. K., Dangi, S. B., Dhayal, V., Kumar, U., Hashmi, S. Z., Sadhu, V., et. al: Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polymer Compos. 41(7), 2792–2802 (2020).

  • Kim, J.S., Tyler, D., Rose, A., Zhu, Z.G., Swager, T.M.: Directing energy transfer within conjugated polymer thin films. J. Am. Chem. Soc. 123, 11488–11489 (2001)

    Google Scholar 

  • Lewinska, G., Sanetra, J., Marszalek, K.W.: Application of quinoline derivatives in third-generation photovoltaics. J. Mater. Sci.: Mater. Electron. 32(14), 18451–18465 (2021)

    Google Scholar 

  • Li, Y., Coropceanu, V., Brédas, J.L.: Thermal narrowing of the electronic bandwidths in organic molecular semiconductors: impact of the crystal thermal expansion. J. Phys. Chem. Lett. 3(22), 3325–3329 (2012)

    Google Scholar 

  • Li, Y., Ma, X.-S.: Optical properties of pyrazine derivatives compared with their s-triazine analogs. In: 6th International Conference on Mechatronics, Materials, Biotechnology and Environment (ICMMBE 2016), 114–118. Atlantis Press, North Holland (2016).

  • Makhloufi, M.M., Radwan, A.S., Ghazal, B.: Experimental and DFT insights into molecular structure and optical properties of new chalcones as promising photosensitizers towards solar cell applications. Appl. Surf. Sci. 452, 337–351 (2018)

    ADS  Google Scholar 

  • Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30(9), 244–247 (1944)

    ADS  MathSciNet  MATH  Google Scholar 

  • Murtaza, G., Sadique, G., Rahnamaye Aliabad, H. A., Khalid, M. N., Naeem, S., Afaq, A., Amin, B., Ahmad, I.: First principle study of cubic perovskites: AgTF3 (T= Mg, Zn). Phys. B: Condensed Matter 406(24), 4584–4589 (2011a).

  • Murtaza, G., Ahmad, I., Maqbool,M., Rahnamaye Aliabad, H. A., Afaq, A.: Structural and optoelectronic properties of cubic CsPbF3 for novel applications. Chin.Phys. Lett. 28(11), 117803 (2011b).

  • Myers, J.D., Xue, J.: Organic semiconductors and their applications in photovoltaic devices. Polym. Rev. 52(1), 1–37 (2012)

    Google Scholar 

  • Narimani, M., Nourbakhsh, Z.: Electronic, topological phase and optical properties of XPdBi (X= Lu, Sc) nano-layers. Thin Solid Films 616, 287–296 (2016)

    ADS  Google Scholar 

  • Naseri, M., Jalilian, J.: Electronic and optical investigations of Be2C monolayer: Under stress and strain conditions. Mater. Res. Bull. 88, 49–55 (2017)

    Google Scholar 

  • Ong, H.L., Lagua, F.M., Alea, G.: Chemical reactivity and bioactivity properties of pyrazinamide analogs of acetylsalicylic acid and salicylic acid using conceptual density functional theory. Heliyon. 6(6), e04239 (2020)

    Google Scholar 

  • Patra, D., Mishra, A.K.: Fluorescence quenching of benzo[k]fluoranthene in poly(vinyl alcohol) film: a possible optical sensor for nitro aromatic compounds. Sensors Actuators B80, 278–282 (2001)

    Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  • Ponce, A.R., Olguín, D., Calderón, I.H.: Calculation of the effective masses of II-VI semiconductor compounds. Superficies y Vacío 16(2), 26–28 (2003)

    Google Scholar 

  • Rapp, A. O., Bestgen, H., Adam, W., & Peek, R. D.: Electron energy loss spectroscopy (EELS) for quantification of cell-wall penetration of a melamine resin. Holzforschung, 111–117 (1999).

  • Rasmussen, S., Ryan, C., Schwiderski, L., Mulholland, M.E.: Thieno [3, 4-b] pyrazines and their applications to low band gap organic materials. Chem. Commun. 47(41), 11394–11410 (2011).

  • Rast, L., Sullivan, T., Tewary, V.K.: Stratified graphene/noble metal systems for low-loss plasmonics applications. Phys. Rev. B 87(4), 045428 (2013)

    ADS  Google Scholar 

  • Rezaei-Sameti, M., Shiravand, E.: The thermodynamic, quantum, AIM and NBO study of the interaction of pyrazinamide drug with the pristine and transition metal-doped B12P12. Adsorption 26(6), 955–970 (2020)

    Google Scholar 

  • Saikia, N., Deka, R.C.: A comparison of the effect of nanotube chirality and electronic properties on the π–π interaction of single-wall carbon nanotubes with pyrazinamide antitubercular drug. Int. J. Quantum Chem. 113(9), 1272–1284 (2013)

    Google Scholar 

  • Saikia, N., Deka, R.C.: Density functional study on noncovalent functionalization of pyrazinamide chemotherapeutic with graphene and its prototypes. New J. Chem. 38(3), 1116–1128 (2014)

    Google Scholar 

  • Saikia, N., Seel, M., Pandey, R.: Stability and electronic properties of 2D nanomaterials conjugated with pyrazinamide chemotherapeutic: a first-principles cluster study. J. Phys. Chem. C 120(36), 20323–20332 (2016)

    Google Scholar 

  • Santucci, P., Greenwood, D.J., Fearns, A., Chen, K., Jiang, H., Gutierrez, M.G.: Intracellular localisation of Mycobacterium tuberculosis affects efficacy of the antibiotic pyrazinamide. Nat. Commun. 12(1), 1–5 (2021)

    Google Scholar 

  • Sathya, A., Prabhu, T., Ramalingam, S.: Molecular property, UV-visible spectra, NMR analysis of pyrazinamide using computational tools. Int. J. Basic Appl. Res. 8, 1172–1183 (2018)

    Google Scholar 

  • Schon, J.H., Kloc, C., Batlogg, B.: Fractional quantum hall effect in organic molecular semiconductors. Science 288(5475), 2338–2340 (2000)

    ADS  Google Scholar 

  • Shen, Y., Ai, Q.: Optical properties of drug metabolites in latent fingermarks. Sci. Rep. 6(1), 1–9 (2016)

    Google Scholar 

  • Skierbiszewski, C.: Experimental studies of the conduction-band structure of GaInNAs alloys. Semicond. Sci. Technol. 17(8), 803 (2002)

    ADS  Google Scholar 

  • Szlachcic, P., Uchacz, T.: Influence of fluorine on the photophysical, electrochemical properties and basicity of quinoline derivatives. J. Lumin. 194, 579–587 (2018)

    Google Scholar 

  • Tauc, T., Kubelka, P., & Munk, F.: Information, S.; Tauc, T. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018).

  • Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    ADS  Google Scholar 

  • Védaste, K., Egide, K., Claver, K., Kaale, E.: Development and validation of high-performance thin-layer chromatographic method for the simultaneous determination of rifampicin, isoniazid, and pyrazinamide in a fixed dosage combination tablet. JPC-J. Planar Chromatogr.-Modern TLC. 127(5), 392–397 (2014)

    Google Scholar 

  • Wang, M., Ballabio, M., Wang, M., Lin, H. H., Biswal, B. P., Han, X., Paasch, S., Brunner, E., Liu, P., Chen, M., Bonn, M., Heine, T., Zhou, S., Cánovas, E., Dong, R., Feng, X.: Unveiling electronic properties in metal–phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 141(42), 16810–16816 (2019).

  • Yang, D., Ma, D.: Development of organic semiconductor photodetectors: from mechanism to applications. Adv. Opt. Mater. 7(1), 1800522 (2019)

    MathSciNet  Google Scholar 

  • Yang, J., Hu, W., Zhao, J., Xu, L.: Effect of fluorine substitution on properties of hole-transporting materials for perovskite solar cells. Dyes Pigm. 204, 110370 (2022)

    Google Scholar 

  • Zhang, N., Savic, R.M., Boeree, M.J., Peloquin, C.A., Weiner, M., Heinrich, N., Bliven-Sizemore, E., Phillips, P.P., Hoelscher, M., Whitworth, W., Morlock, G.: Optimising pyrazinamide for the treatment of tuberculosis. Euro. Respiratory J. 58(1), (2021).

  • Zhao, L.L., Chen, Y., Chen, Z.N., Liu, H.C., Hu, P.L., Sun, Q., Zhao, X.Q., Jiang, Y., Li, G.L., Tan, Y.H., Wan, K.L.: Prevalence and molecular characteristics of drug-resistant Mycobacterium tuberculosis in Hunan, China. Antimicrobial Agents Chemother.. 58(6), 3475–3480 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to P. Blaha (Vienna University of Technology, Austria) for his technical assistance in using the WIEN2k code.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HARA: Conceptualization, Software, Resources, Data Curation, Writing—Review & Editing, Supervision, Project administration, funding acquisition. MA: Investigation, Software, Writing—Original Draft, Visualization. BM: Validation, Investigation, Writing—Review & Editing. RG: Software. MK: Writing- Reviewing and Editing, ZC: Software.

Corresponding author

Correspondence to H. A. Rahnamaye Aliabad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahnamaye Aliabad, H.A., Azadparvar, M., Mahdavi, B. et al. First principle study of the optoelectronic properties of pyrazinamide drug. Opt Quant Electron 55, 714 (2023). https://doi.org/10.1007/s11082-023-05041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05041-y

Keywords

Navigation