Skip to main content

Advertisement

Log in

A study on bowtie antenna based optical rectenna system for THz energy harvesting applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The world is seeking alternative ways of renewable energy to fulfill the everyday growing energy demands and to reduce reliance on traditional carbon-based fuels. The scientific communities and researchers have started looking Infra-Red (IR) as an alternative source of renewable energy. There is abundant IR energy available from the waste heat sources. Harvesting this IR energy can be a promising solution in addressing the clean energy demand. The waste heat can be treated as high oscillating electromagnetic (EM) waves, having the highest intensity at 10.6 µm (28.3 THz). The IR energy harvesting can be achieved by using a device typically known as “Rectenna”, which is an integration of nanoantenna and high frequency diode. The bowtie antenna which has ease in fabrication and integration simplicity is one of the ideal candidates for nanoantenna in collecting the waves. Furthermore, for energy harvesting applications, it is desired to have a passive rectification. The metal–Insulator-metal (M1I1M2) which works on the principle of electron tunneling, are one of the few candidates for rectenna system. In this paper, a different combination of metal arms has been explored for high frequency (28.3 THz) operations. The metal with different work function has been simulated to have the best electron tunneling and higher rectification. Also, in the this work we have studied the effect of substrate on the antenna performance at 28.3 THz. According to author best knowledge, this is the first comprehensive and systematic study on antenna arms for the rectenna system used in energy harvesting applications at 28.3 THz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdulrazzaq, O.A., Saini, V., Bourdo, S., Dervishi, E., Biris, A.S.: Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part. Sci. Technol. 31(5), 427–442 (2013)

    Article  Google Scholar 

  • Alodhayb, A., Meredov, A., Dawar, P.: A simulation study of multi-junction insulator tunnel diode for solar energy harvesting applications. Mater Res Expr 8(9), 095509 (2021)

    Article  ADS  Google Scholar 

  • Angelis-Dimakis, A., Biberacher, M., Dominguez, J., Fiorese, G., Gadocha, S., Gnansounou, E., Guariso, G., Kartalidis, A., Panichelli, L., Pinedo, I., Robba, M.: Methods and tools to evaluate the availability of renewable energy sources. Renew. Sustain. Energy Rev. 15(2), 1182–1200 (2011)

    Article  Google Scholar 

  • Bauen, A.: Future energy sources and systems—acting on climate change and energy security. J. Power Sources 157(2), 893–901 (2006)

    Article  ADS  Google Scholar 

  • Bean, J.A., Weeks, A., Boreman, G.D.: Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors. IEEE. J. Quantum Electron 47, 126–135 (2011)

    Article  ADS  Google Scholar 

  • Belkadi, A., Weerakkody, A., Moddel, G.: Demonstration of resonant tunneling effects in metal-double-insulator-metal (MI 2 M) diodes. Nat. Commun. 12(1), 1–6 (2021)

    Article  Google Scholar 

  • Berland, B.: Photovoltaic Technologies beyond the Horizon: Optical Rectenna Solar Cell, 2003. Final Report, NREL/SR-520e33263

  • Bernd, H.: Strassner, Kai Chang, Rectifying Antennas (rectennas). In: Chang, K. (ed.) Encyclopedia of RF and Microwave Engineering. Wiley, Hoboken (2005)

    Google Scholar 

  • Bosshard, P., Hermann, W., Hung, E, Hunt, R., Simon, A.: An assessment of solar energy conversion technologies and research opportunities, GCEP Energy Assessment Analysis (2006)

  • Branker, K., Pathak, M.J.M., Pearce, J.M.: A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 15(9), 4470–5448 (2011)

    Article  Google Scholar 

  • Brown, W.C.: Experiments involving a microwave beam to power and position a helicopter. IEEE Trans Aerosp Electron Syst 5, 692–702 (1969)

    Article  ADS  Google Scholar 

  • Brown, W.C.: Optimization of the efficiency and other properties of the rectenna element, In: Microwave Symposium, 1976 IEEE-MTT-S International, IEEE, pp.142e144 (1976)

  • Chapin, D.M., Fuller, C.S., Pearson, G.L.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954)

    Article  ADS  Google Scholar 

  • Chapin, C.F. and Pearson, G., 1953. Great Ideas Changing the World

  • Demirbas, A., Sahin-Demirbas, A., HilalDemirbas, A.: Global energy sources, energy usage, and future developments. Energy Sources 26(3), 191–204 (2004)

    Article  Google Scholar 

  • Dorneles, L.S., Schaefer, D.M., Carara, M., Schelp, L.F.: The use of Simmons’ equation to quantify the insulating barrier parameters in Al/AlO x/Al tunnel junctions. Appl. Phys. Lett. 82(17), 2832–2834 (2003)

    Article  ADS  Google Scholar 

  • Eliasson, B.J.: Metal-insulator-metal Diodes for Solar Energy Conversion, University of Colorado, Ph.D. diss. (2001)

  • Eliasson, B.J., Garret Moddel.: “Metal-oxide Electron Tunneling Device for Solar Energy Conversion.” U.S. Patent 6,534,784, issued March 18, 2003

  • Fraas, L.M.: History of solar cell development, p. 1. In Low-cost solar electric power Springer, Cham. (2014)

    Google Scholar 

  • Gadalla, M.N., Abdel-Rahman, M., Shamim, A.: Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci. Rep. 4, 1 (2014)

    Article  Google Scholar 

  • Goswami, D.Y., Vijayaraghavan, S., Lu, S., Tamm, G.: New and emerging developments in solar energy. Sol. Energy 76(1), 33–43 (2004)

    Article  ADS  Google Scholar 

  • Grover, S., Moddel, G.: Metal Single-insulator and Multi-insulator Diodes for Rectenna Solar Cells. In: Rectenna Solar Cells, p. 89e109. Springer, New York (2013)

    Google Scholar 

  • Hauser, J.R., Dunbar, P.M.: Performance limitations of silicon solar cells. IEEE Trans. Electron Devices 24(4), 305–321 (1977)

    Article  ADS  Google Scholar 

  • Hsizl, J., Schulte, F.K.: Work function of metals solid surface physics. Springer Tracts Modern Phys 85, 1 (1979)

    Article  ADS  Google Scholar 

  • Jayaswal, G., Belkadi, A., AzatMeredov, B., Pelz, G.M., Shamim, A.: Optical rectification through an Al2O3 based MIM passive rectenna at 283 THz. Mater Today Energy 7, 1–9 (2018)

    Article  Google Scholar 

  • Jayaswal, Gaurav, A. Belkadi, Azat Meredov, B. Pelz, G. Moddel, and Atif Shamim. "A zero-bias, completely passive 28 THz rectenna for energy harvesting from infrared (waste heat)." In 2018 IEEE/MTT-S International Microwave Symposium-IMS, pp. 355–358. IEEE, 2018

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B. 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

  • Khan, A.A., Jayaswal, G., Gahaffar, F.A., Shamim, A.: Metal-insulator-metal diodes with subnanometre surface roughness for energy-harvesting applications. Microelectron. Eng. 181, 34–42 (2017)

    Article  Google Scholar 

  • Kothari, R., Tyagi, V.V., Pathak, A.: Waste-to-energy: a way from renewable energy sources to sustainable development. Renew. Sustain. Energy Rev. 14(9), 3164–3170 (2010)

    Article  Google Scholar 

  • Milanovich, F.P. and Hirschfeld, T.O.M.A.S., 1983. Process, product, and waste-stream monitoring with fiber optics (No. UCRL-89026; CONF-8310102-1). Lawrence Livermore National Lab., CA (USA)

  • Miskovsky, N.M., Cutler, P.H., Mayer, A., Weiss, B.L., Willis, B., Sullivan, T.E., Lerner, P.B.: Nanoscale devices for rectification of high frequency radiation from the infrared through the visible: a new approach. J. Nanotechnol. 19, 512379 (2012)

    Google Scholar 

  • Moddel, G., Grover, S. (eds.): Rectenna solar cells, vol. 4. Springer, New York (2013)

    Google Scholar 

  • Müller-Steinhagen, H., Nitsch, J.: The contribution of renewable energies to a sustainable energy economy. Process Saf. Environ. Prot. 83(4), 285–297 (2005)

    Article  Google Scholar 

  • Nanophotonic FDTD Simulation Software – Lumerical FDTD. https://www.lumerical.com/tcadproducts/fdtd

  • Palik, E.D.: Handbook of optical constants of solids. Academic Press Inc, San Diego (1985)

    Google Scholar 

  • Pierret, Robert F. Semiconductor device fundamentals. Pearson Education India, 1996.

  • Ren, Y.-J., Li, M.-Y., Chang, K.: 35 GHz rectifying antenna for wireless power transmission. Electron. Lett. 43(11), 602–603 (2007)

    Article  ADS  Google Scholar 

  • Sangrody, H., Sarailoo, M., Zhou, N., Tran, N., Motalleb, M., Foruzan, E.: Weather forecasting error in solar energy forecasting. IET Renew. Power Gener. 11(10), 1274–1280 (2017)

    Article  Google Scholar 

  • Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J., Masanet, E., Horner, N., Azevedo, I. and Lintner, W., 2016. United states data center energy usage report.

  • Singh, Yaduvir. Semiconductor devices. IK International Pvt Ltd, 2013.

  • Tripathi, L., Mishra, A.K., Dubey, A.K., Tripathi, C.B., Baredar, P.: Renewable energy: an overview on its contribution in current energy scenario of India. Renew. Sustain. Energy Rev. 60, 226–233 (2016)

    Article  Google Scholar 

  • Wang, K., Hu, H., Lu, S., Guo, L., He, T.: Design of a sector bowtie nano-rectenna for optical power and infrared detection. Front. Phys. 10(5), 104101 (2015)

    Article  ADS  Google Scholar 

  • Zeng, Z., Liu, Y., Wei, J.: Recent advances in surface-enhanced raman spectroscopy (SERS): finite-difference time-domain (FDTD) method for SERS and sensing applications.". TrAC, Trends Anal. Chem. 75, 162–173 (2016). https://doi.org/10.1016/j.trac.2015.06.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3–231–1)

Author information

Authors and Affiliations

Authors

Contributions

GAK, NA, AA, SC–writing and experimentation. VA, SP, GJ–technical evaluation and inference.

Corresponding author

Correspondence to Abdullah Alodhayb.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable. No human and/or animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khouqeer, G., Alanazi, N., Alodhayb, A. et al. A study on bowtie antenna based optical rectenna system for THz energy harvesting applications. Opt Quant Electron 55, 674 (2023). https://doi.org/10.1007/s11082-023-04967-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04967-7

Keywords

Navigation