Skip to main content
Log in

Novel optical solitons for the Ablowitz–Ladik lattice equation with conformable derivatives in the optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The principal purpose of this research is to utilize the exp-function approach for achieving exact solutions of nonlinear optical fibers, including fractional order in the sense of conformable derivatives. Owing to the algorithm of symbolic computational, Some soliton solutions are obtained, including solitary soliton, singular kink-type soliton, and periodic solitons. These results are generated and developed by using the exp-function. To the greatest of our knowledge, the soliton solutions given in this study could be highly beneficial in comprehending physical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

There is no data set used.

References

  • Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  MATH  Google Scholar 

  • Adem, A.R., Ntsime, B.P., Biswas, A., Khan, S., Alzahrani, A.K., Belic, M.R.: Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan–Porsezian–Daniel model having Kerr law of nonlinear refractive index. Ukr. J. Phys. Opt. 22(2), 83–86 (2021)

    Google Scholar 

  • Aderyani, S.R., Saadati, R., Vahidi, J., Allahviranloo, T.: The exact solutions of the conformable time-fractional modified nonlinear Schrödinger equation by the trial equation method and modified trial equation method. Adv. Math. Phys. 2022 (2022)

  • Akbulut, A., Kaplan, M.: Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 75(3), 876–882 (2018)

    MathSciNet  MATH  Google Scholar 

  • Akram, G., Mahak, N.: Application of the first integral method for solving (1+1) dimensional cubic-quintic complex Ginzburg-Landau equation. Optik (Stuttg) 164, 210–217 (2018)

    ADS  Google Scholar 

  • Al Qarni, A., Bodaqah, A., Mohammed, A., Alshaery, A., Bakodah, H., Biswas, A.: Dark and singular cubic-quartic optical solitons with Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme. Ukr. J. Phys. Opt. 24(1) (2023)

  • Al Qarni, A.A., Bodaqah, A.M., Mohammed, A.S.H.F., Alshaery, A.A., Bakodah, H.O., Biswas, A.: Cubic-quartic optical solitons for Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme. Ukr. J. Phys. Opt. 23(4), 228–242 (2022)

    Google Scholar 

  • Al-Kalbani, K.K., Al-Ghafri, K.S., Krishnan, E.V., Biswas, A.: Pure-cubic optical solitons by Jacobi’s elliptic function approach. Optik (Stuttg) 243, 167404 (2021)

    ADS  Google Scholar 

  • Al-Raeei, M., El-Daher, M.S.: On: new optical soliton solutions for nonlinear complex fractional Schrödinger equation via new auxiliary equation method and novel (\(G^{\prime } / G\))-expansion method. Pramana 94(1), 9 (2020)

    ADS  Google Scholar 

  • Aphane, M., Moshokoa, S.P., Alshehri, H.M.: Quiescent optical solitons with Kudryashovs generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion: generalized temporal evolution. Ukr. J. Phys. Opt. 24(2), 105–113 (2023)

    Google Scholar 

  • Asghari, Y., Eslami, M., Rezazadeh, H.: Soliton solutions for the time-fractional nonlinear differential-difference equation with conformable derivatives in the ferroelectric materials. Opt. Quant. Electron. 55(4), 289 (2023)

    Google Scholar 

  • Asghari, Y., Eslami, M., Rezazadeh, H.: Exact solutions to the conformable time-fractional discretized MKDV lattice system using the fractional transformation method. Opt. Quant. Electron. 55(4), 318 (2023)

    Google Scholar 

  • Asjad, M.I., Inc, M., Faridi, W.A., Bakar, M.A., Muhammad, T., Rezazadeh, H.: Optical solitonic structures with singular and non-singular kernel for nonlinear fractional model in quantum mechanics. Opt. Quant. Electron. 55(3), 1–20 (2023)

    Google Scholar 

  • Biswas, M., Milovic, A., Edwards, D.: Mathematical Theory of Dispersion-Managed Optical Solitons. Springer (2010)

    MATH  Google Scholar 

  • Biswas, A., Yildirim, Y., Yasar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Chiral solitons with Bohm potential by modified simple equation method and trial equation scheme. Acta Phys. Pol. A 134(6), 1120–1125 (2018)

    ADS  Google Scholar 

  • Biswas, A., Dakova, A., Khan, S., Ekici, M., Moraru, L., Belic, M.R.: Cubic-quartic optical soliton perturbation with Fokas–Lenells equation by semi-inverse variation. Semicond. Phys. Quantum Electron. Optoelectron. 8, 460 (2021)

    Google Scholar 

  • Biswas, A., Edoki, J., Guggilla, P., Khan, S., Alzahrani, A.K., Belic, M.R.: Cubic-quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by semi-inverse variational principle. Ukr. J. Phys. Opt. 22(3), 228–242 (2021)

    Google Scholar 

  • Chen, B., Hu, J., Zhao, Y., Ghosh, B.K.: Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach. Neurocomputing 481, 322–332 (2022)

    Google Scholar 

  • Darmani, G., Setayeshi, S., Ramezanpour, H.: Toward analytic solution of nonlinear differential difference equations via extended sensitivity approach. Commun. Theor. Phys. 57(1), 5–9 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  • Dutta, H., Günerhan, H., Ali, K.K., Yilmazer, R.: Exact soliton solutions to the cubic-quartic non-linear Schrödinger equation with conformable derivative. Front. Phys. 8, 62 (2020)

    Google Scholar 

  • Fu, Q., Si, L., Liu, J., Shi, H., Li, Y.: Design and experimental study of a polarization imaging optical system for oil spills on sea surfaces. Appl. Opt. 61(21), 6330–6338 (2022)

    ADS  Google Scholar 

  • Fu, Q., Luo, K., Song, Y., Zhang, M., Zhang, S., Zhan, J., Duan, J., Li, Y.: Study of sea fog environment polarization transmission characteristics. Appl. Sci. 12(17), 8892 (2022)

    Google Scholar 

  • González-Gaxiola, O., Biswas, A., Yildirim, Y., Alshehri, H.M.: Bright optical solitons with polynomial law of nonlinear refractive index by Adomian decomposition scheme. Proc. Est. Acad. Sci. 71(3), 213–220 (2022)

    MathSciNet  MATH  Google Scholar 

  • González-Gaxiola, O., Biswas, A., Yildirim, Y., Alshehri, H.M.: Highly dispersive optical solitons in birefringent fibres with non local form of nonlinear refractive index: Laplace-Adomian decomposition. Ukr. J. Phys. Opt. 23(2), 68–76 (2022)

    Google Scholar 

  • Gou, G., Zhang, Z., Fan, T., Fang, L., Liu, M., Li, L.: Synthesis, optical properties and self-organization of blue-emitting butterfly-shaped dithienobenzosiloles. Chin. Chem. Lett. 33(9), 4306–4312 (2022)

    Google Scholar 

  • Hosseini, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method. Optik (Stuttg) 132, 203–209 (2017)

    ADS  Google Scholar 

  • Houwe, A., Inc, M., Doka, S.Y., Acay, B., Hoan, L.V.: The discrete tanh method for solving the nonlinear differential-difference equations. Int. J. Mod. Phys. B 34(19), 2050177 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  • Huang, S.J., Yang, N.J.: Auto-Backlund transform and exact solutions to local conformable time-fractional viscous Burgers system. Eur. Lett. 125(1), 15003 (2019)

    ADS  Google Scholar 

  • Ilie, M., Biazar, J., Ayati, Z.: Analytical study of exact traveling wave solutions for time-fractional nonlinear Schrödinger equations. Opt. Quantum Electron. 50(12), 01–13 (2018)

    Google Scholar 

  • Ilie, M., Biazar, J., Ayati, Z.: Resonant solitons to the nonlinear Schrödinger equation with different forms of nonlinearities. Optik (Stuttg) 164, 201–209 (2018)

    ADS  Google Scholar 

  • Ismael, H.F., Bulut, H., Baskonus, H.M.: Optical soliton solutions to the Fokas–Lenells equation via sine-Gordon expansion method and (m+ (\(G^{\prime } / G\))) -expansion method. Pramana J. Phys. 94(1), 1–9 (2020)

    Google Scholar 

  • Kaplan, M.: Applications of two reliable methods for solving a nonlinear conformable time-fractional equation. Opt. Quantum Electron. 49(9), 312 (2017)

    Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  • Khalil, T.A., Badra, N., Ahmed, H.M., Rabie, W.B.: Optical solitons and other solutions for coupled system of nonlinear Biswas–Milovic equation with Kudryashovs law of refractive index by Jacobi elliptic function expansion method. Optik (Stuttg) 253, 168540 (2022)

    ADS  Google Scholar 

  • Kong, L., Liu, G.: Synchrotron-based infrared microspectroscopy under high pressure: an introduction. Matter Radiat. Extrem. 6(6), 068202 (2021)

    Google Scholar 

  • Korkmaz, A.: Exact solutions to (3+1) conformable time fractional Jimbo–Miwa, Zakharov–Kuznetsov and modified Zakharov–Kuznetsov equations. Commun. Theor. Phys. 67(5), 479–482 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Korkmaz, A., Hepson, O.E., Hosseini, K., Rezazadeh, H., Eslami, M.: Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud Univ. Sci. 32(1), 567–574 (2020)

    Google Scholar 

  • Kuo, C.K.: New solitary solutions of the Gardner equation and Whitham–Broer–Kaup equations by the modified simplest equation method. Optik (Stuttg) 147, 128–135 (2017)

    ADS  Google Scholar 

  • Li, Z., Han, T.: Bifurcation and exact solutions for the (2 + 1)-dimensional conformable time-fractional Zoomeron equation. Adv. Differ. Equ. 1, 2020 (2020)

    MathSciNet  MATH  Google Scholar 

  • Li, X., Wang, L., Zhou, Z., Chen, Y., Yan, Z.: Stable dynamics and excitations of single- and double-hump solitons in the Kerr nonlinear media with PT-symmetric HHG potentials. Nonlinear Dyn. 108(4), 4045–4056 (2022)

    Google Scholar 

  • Li, X., Dong, Z.-Q., Wang, L.-P., Niu, X.-D., Yamaguchi, H., Li, D.-C., Yu, P.: A magnetic field coupling fractional step lattice Boltzmann model for the complex interfacial behavior in magnetic multiphase flows. Appl. Math. Model. 117, 219–250 (2023)

    MathSciNet  MATH  Google Scholar 

  • Liu, J.-G., Zhang, Y.-F., Wang, J.-J.: Investigation of the time fractional generalized (2+1)-dimensional Zakharov–Kuznetsov equation with single-power law nonlinearity. Fractals (2023)

  • Liu, J.G., Yang, X.J., Geng, L.L., Yu, X.J.: On fractional symmetry group scheme to the higher-dimensional space and time fractional dissipative Burgers equation. Int. J. Geom. Methods Mod. Phys. 19(11), 2250173 (2022)

    MathSciNet  Google Scholar 

  • Piao, X., Kim, P.: Comment on: “the modified extended tanh-function method for solving Burgers-type equations’’ [Physica A 361,: 394–404]. Phys. A Stat. Mech. Appl. 569, 2021 (2006)

    Google Scholar 

  • Rezazadeh, H., Batool, F., Inc, M., Akinyemi, L., Hashemi, M.S.: Exact traveling wave solutions of generalized fractional tzitz eica-type nonlinear evolution equations in nonlinear optics. Opt. Quant. Electron. 55(6), 485 (2023)

    Google Scholar 

  • Sajid,N., Akram,G.: The application of the exp(-\(\Phi \)())-expansion method for finding the exact solutions of two integrable equations. Math. Probl. Eng. 2018 (2018)

  • Sheng, H., Cong, R., Yang, D., Chen, R., Wang, S., Cui, Z.: Urbanlf: a comprehensive light field dataset for semantic segmentation of urban scenes. IEEE Trans. Circuits Syst. Video Technol. 32(11), 7880–7893 (2022)

    Google Scholar 

  • Sirisubtawee, S., Koonprasert, S., Sungnul, S., Leekparn, T.: Exact traveling wave solutions of the space-time fractional complex Ginzburg-Landau equation and the space-time fractional Phi-4 equation using reliable methods. Adv. Differ. Equ. 1, 2019 (2019)

    MathSciNet  MATH  Google Scholar 

  • Souleymanou, A., Houwe, A., Kara, A., Rezazadeh, H., Akinyemi, L., Mukam, S.P., Doka, S.Y., Bouetou, T.B.: Explicit exact solutions and conservation laws in a medium with competing weakly nonlocal nonlinearity and parabolic law nonlinearity. Opt. Quant. Electron. 55(5), 464 (2023)

    Google Scholar 

  • Spohn, H.: Hydrodynamic equations for the Ablowitz–Ladik discretization of the nonlinear Schrödinger equation. J. Math. Phys. 63(3), 033305 (2022)

    ADS  MATH  Google Scholar 

  • Tariq, K.U., Zainab, H., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Mousa, A.A.A.: On some novel optical wave solutions to the paraxial M-fractional nonlinear Schrödinger dynamical equation. Opt. Quantum Electron. 53(5), 1–14 (2021)

    Google Scholar 

  • Tian, Y., Liu, J.: A modified exp-function method for fractional partial differential equations. Therm. Sci. 25(2), 1237–1241 (2021)

    Google Scholar 

  • Wang, Z., Hao, A., Xing, P.: Helical secondary structures and supramolecular tilted chirality in n-terminal aryl amino acids with diversified optical activities. Chin. Chem. Lett. 32(4), 1390–1396 (2021)

    Google Scholar 

  • Wang, S., Sheng, H., Yang, D., Zhang, Y., Wu, Y., Wang, S.: Extendable multiple nodes recurrent tracking framework with rtu++. IEEE Trans. Image Process. 31, 5257–5271 (2022)

    ADS  Google Scholar 

  • Yildirim, Y., Biswas, A., Kara, A.H., Ekici, M., Khan, S., Belic, M.R.: Optical soliton perturbation and conservation law with kudryashov’s refractive index having quadrupled power-law and dual form of generalized nonlocal nonlinearity. Semicond. Phys. Quantum Electron. Optoelectron. 24(1), 64–70 (2021)

    Google Scholar 

  • Yildirim, Y., Biswas, A., Khan, S., Belic, M.R.: Embedded solitons with \(\chi \) (2) and \(\chi \) (3) nonlinear susceptibilities. Semicond. Phys. Quantum Electron. Optoelectron. 24(2), 160–165 (2021)

    Google Scholar 

  • Yıldırım, M.R., Biswas, Y., Guggilla, A., Khan, P., Alshehri, S., Belic, H.M.: Optical solitons in fibre Bragg gratings with third-and fourth-order dispersive reflectivities. Ukr. J. Phys. Opt. 22(4), 239–254 (2021)

    Google Scholar 

  • Yildrim, Y., Biswas, A., Dakova, A., Guggilla, P., Khan, S., Alshehri, H.M., Belic, M.R.: Cubic-quartic optical solitons having quadratic-cubic nonlinearity by sine-Gordon equation approach. Ukr. J. Phys. Opt. 22(4), 255–269 (2021)

    Google Scholar 

  • Younas, U., Younis, M., Seadawy, A.R., Rizvi, S.T., Althobaiti, S., Sayed, S.: Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative. Results Phys. 20, 103766 (2021)

    Google Scholar 

  • Zafar, A., Shakeel, M., Ali, A., Akinyemi, L., Rezazadeh, H.: Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes. Opt. Quant. Electron. 54, 1–15 (2022)

    Google Scholar 

  • Zayed,E. M., Alngar,M. E., Biswas,A., Ekici,M., Khan,S., Alzahrani,A. K., Belic,M. R.: Optical solitons in fiber Bragg gratings with quadratic-cubic law of nonlinear refractive index and cubic-quartic dispersive reflectivity. Proc. Est. Acad. Sci. 71(2) (2022)

  • Zayed, E.M., Shohib, R., Alngar, M.E., Biswas, A., Yıldırım, Y., Dakova, A., Belic, M.R.: Optical solitons in the Sasa-Satsuma model with multiplicative noise via Itô calculus. Ukr. J. Phys. Opt. 23(1), 9–14 (2022)

    Google Scholar 

  • Zayed, E.M., Shohib, R.M., Alngar, M.E. Biswas, A., Ekici, M., Khan, S., Alzahrani, A.K., Belic, M.R.: Optical solitons and conservation laws associated with Kudryashov’s sextic power-law nonlinearity of refractive index. Ukr. J. Phys. Opt. 22(1) (2021)

  • Zayed, E.M., Al-Nowehy, A.G.: New extended auxiliary equation method for finding many new Jacobi elliptic function solutions of three nonlinear Schrödinger equations. Waves Random Complex Med. 27(3), 420–439 (2017)

    ADS  MATH  Google Scholar 

  • Zayed, E.M., Shohib, R.M.: Optical solitons and other solutions to Biswas–Arshed equation using the extended simplest equation method. Optik (Stuttg) 185, 626–635 (2019)

    ADS  Google Scholar 

  • Zhang, L., Zhang, J., Wang, X., Tao, M., Dai, G., Wu, J., Miao, Z., Han, S., Yu, H., Lin, X.: Design of coherent wideband radiation process in a nd3+-doped high entropy glass system. Light Sci. Appl. 11(1), 181 (2022)

    ADS  Google Scholar 

  • Zhang, S., Zhou, Y.Y., Cai, B.: Kink-type solutions of the MKdV lattice equation with an arbitrary function. Adv. Mater. Res. 989–994, 1716–1719 (2014)

    Google Scholar 

  • Zhao, C., Cheung, C.F., Xu, P.: High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Trans. 101, 503–514 (2020)

    Google Scholar 

  • Zhao, Q., Liu, J., Yang, H., Liu, H., Zeng, G., Huang, B., Jia, J.: Double u-groove temperature and refractive index photonic crystal fiber sensor based on surface plasmon resonance. Appl. Opt. 61(24), 7225–7230 (2022)

    ADS  Google Scholar 

  • Zhao, Q., Liu, J., Yang, H., Liu, H., Zeng, G., Huang, B.: High birefringence d-shaped germanium-doped photonic crystal fiber sensor. Micromachines 13(6), 826 (2022)

    Google Scholar 

  • Zulfiqar, A., Ahmad, J.: Soliton solutions of fractional modified unstable Schrödinger equation using exp-function method. Results Phys. 19, 103476 (2020)

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y. A. gave the first idea of investigation. The concept and modeling was done by M.E. The methodology, reviewing and editing has been done by H.R.

Corresponding author

Correspondence to Mostafa Eslami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors declare that there is no animal studies in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghari, Y., Eslami, M. & Rezazadeh, H. Novel optical solitons for the Ablowitz–Ladik lattice equation with conformable derivatives in the optical fibers. Opt Quant Electron 55, 930 (2023). https://doi.org/10.1007/s11082-023-04953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04953-z

Keywords

Navigation