Skip to main content
Log in

Photonic crystal bio-sensor for highly sensitive label-free detection of cancer cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A novel design of bio-sensor based on the silicon photonic crystal double-elliptical ring resonators with improved sensitivity and capability for cancer detection is proposed. According to numerical results, the design obtained simultaneous high sensitivity of 1170 nm/RIU (nm per refractive index unit) and 1116.66 nm/RIU and improved quality factor (Q) of 422.36 and 449.16 for skin (Basal) and cervical (HeLa) cancer cells, respectively. Furthermore, the design proved the detection limit value as low as \(3.2\times {10}^{-3}\, \text{R}\text{I}\text{U}\). The finite-difference time-domain method is used for the numerical investigation of the proposed structures. The attractive and simple topology of the proposed bio-sensor and its high sensitivity makes it a suitable candidate for bio-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abhishek, J., Krishnan, P., Robinson, S.: A design for an ultrafast all-optical full subtractor based on two-dimensional photonic crystals. J. Comput. Electron. 20, 433–441 (2021)

    Google Scholar 

  • Aly, A.H., Zaky, Z.A.: Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics 104, 102991 (2019)

    Google Scholar 

  • Amoosoltani, N., Mehrabi, K., Zarifkar, A., Farmani, A., Yasrebi, N.: Double-ring resonator plasmonic refractive index sensor utilizing dual-band unidirectional reflectionless propagation effect. Plasmonics 16, 1–9 (2021)

    Google Scholar 

  • Anguluri, S.P.K., Banda, S.R., Krishna, S.V., Kumar, S.S.: The design, analysis, and simulation of an optimized all-optical AND gate using a Y-shaped plasmonic waveguide for high-speed computing devices. J. Comput. Electron. 20, 1892–1899 (2021)

    Google Scholar 

  • Arman, H., Olyaee, S.: Realization of low confinement loss acetylene gas sensor by using hollow-core photonic bandgap fiber. Optic. Quant. Electron. (2021). https://doi.org/10.1007/s11082-021-02969-x

    Article  Google Scholar 

  • Arunkumar, R., Suaganya, T., Robinson, S.: Design and analysis of 2D photonic crystal based bio-sensor to detect different blood components. Photonic Sens. 9, 69–77 (2019)

    ADS  Google Scholar 

  • Ayyanar, N., Thavasi Raja, G., Sharma, M., Sriram Kumar, D.: Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens. J. 18(17), 7093–7099 (2018)

    ADS  Google Scholar 

  • Azab, M., Hameed, M., Mahdiraji, G., Adikan, F., Obayya, S.: Experimental and numerical characterization of a D-shaped PCF refractive index sensor. Opt. Quant. Electron. 54, 846 (2022)

    Google Scholar 

  • Azab, M.Y., Hameed, M.F.O., Obayya, S.S.: Overview of optical biosensors for early cancer detection: fundamentals applications and future perspectives. Biology 12(2), 232 (2023)

    Google Scholar 

  • Biswas, U., Rakshit, J.K.: Photonic crystal race track ring resonator design for the detection of cancer cells. J. Phys. Conf. Ser. 2335(1), 012004 (2022)

    Google Scholar 

  • Biswas, U., Rakshit, K.J., Das, J., Bharti, K.G., Suthar, B., Amphawan, A., Najjar, M.: Design of an ultra-compact and highly-sensitive temperature sensor using photonic crystal based single micro-ring resonator and cascaded micro-ring resonator. SILICON 13(3), 885–892 (2021)

    Google Scholar 

  • Biswas, U., Nayak, C., Rakshit, K.J.: Fabrication techniques and applications of two-dimensional photonic crystal: history and the present status. Opt. Eng. 62(1), 010901 (2022). https://doi.org/10.1117/1.OE.62.1.010901

    Article  Google Scholar 

  • Buswell, S.C., Wright, V.A., Buriak, J.M., Van, V., Evoy, S.: Specific detection of proteins using photonic crystal waveguides. Opt. Express 16(20), 15949–15957 (2008)

    ADS  Google Scholar 

  • Chakravarty, S., Zou, Y., Lai, W.C., Chen, R.T.: Slow light engineering for high Q high sensitivity photonic crystal microcavity bio-sensors in silicon. Biosens. Bioelectron. 38(1), 170–176 (2012)

    Google Scholar 

  • Chhipa, M.K., Robinson, S., Madhav, B.T.P., Janyani, V.: Realization of all-optical logic gates using a single design of 2D photonic band gap structure by square ring resonator. Optic. Eng. 60(7), 075104 (2021)

    ADS  Google Scholar 

  • Chhipa, M.K., Robinson, S., Madhav, B.T.P., Janyani, V.: Ultra-compact with improved data rate optical encoder based on 2D linear photonic crystal ring resonator. Photonic Netw. Commun. 44(1), 30–40 (2022)

    Google Scholar 

  • Chiu, W., Huang, T., Wu, Y., Chan, Y., Hou, C., Chien, H., Chen, C.: A photonic crystal ring resonator formed by SOI nano-rods. Opt. Express 15, 15500–15506 (2007)

    ADS  Google Scholar 

  • Choi, K.H., Huh, J., Cui, Y., Trivedi, K., Hu, W., Ju, B.K., Lee, J.B.: One-step combined-nanolithography-and-photolithography for a 2D photonic crystal TM polarizer. Micromachines 5, 228–238 (2014). https://doi.org/10.3390/mi5020228

    Article  Google Scholar 

  • Chopra, H., Kaler, R.S., Painam, B.: Photonic crystal waveguide-based bio-sensor for detection of diseases. J. Nanophotonics 10(3), 036011 (2016)

    ADS  Google Scholar 

  • Claes, T., Molera, J., De Vos, K., Schacht, E., Baets, R., Bienstman, P.: Label-free biosensing with a slotwaveguide-based ring resonator in silicon on insulator. IEEE Photonics J. 1(3), 197–204 (2009)

    ADS  Google Scholar 

  • Danaie, M., Kiani, B.: Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics Nanostruct. Fundam. Appl. 31, 89–98 (2018)

    ADS  Google Scholar 

  • Danaie, M., Shahzadi, A.: Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14, 1453–1465 (2019)

    Google Scholar 

  • Fathi, F., Rashidi, M.R., Pakchin, S.P., Ahmadi-Kandjani, S., Nikniazi, A.: Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 221, 121615 (2021)

    Google Scholar 

  • Flueckiger, J., Schmidt, S., Donzella, V., Sherwali, A., Ratner, D.M., Chrostowski, L., Cheung, K.C.: Subwavelength grating for enhanced ring resonator bio-sensor. Opt. Express 24(14), 15672–15686 (2016)

    ADS  Google Scholar 

  • Gharsallah, Z., Najjar, M., Suthar, B., Janyani, V.: High sensitivity and ultra-compact optical biosensor for detection of UREA concentration. Opt. Quant. Electron. 50(6), 1–10 (2018)

    Google Scholar 

  • Gharsallah, Z., Najjar, M., Suthar, B., Janyani, V.: Slow light enhanced bio sensing properties of silicon sensors. Optic. Quant. Electron. 51(11), 1–7 (2019)

    Google Scholar 

  • Goldring, D., Levy, U., Mendlovic, D.: Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis. Opt. Express 15(6), 3156–3168 (2007)

    ADS  Google Scholar 

  • Hosseinzadeh-Sani, M., Ghanbari, A., Saghaei, H.: High-sensitivity biosensor for simultaneous detection of cancer and diabetes using photonic crystal microstructure. Opt. Quant. Electron. 54(2), 1–14 (2022)

    Google Scholar 

  • Houle, J.E., Sullivan, D.M.: Electromagnetic simulation using the FDTD method with python. Wiley, New york (2020)

    Google Scholar 

  • Hu, S., Qin, K., Kravchenko, I., Retterer, S., Weiss, S.: Suspended micro-ring resonator for enhanced biomolecule detection sensitivity. Proc. SPIE 8933, 893306 (2014)

    Google Scholar 

  • Huang, K.-M., Ho, C.-L., Chang, H.-J., Wu, M.-C.: Fabrication of inverted zinc oxide photonic crystal using sol–gel solution by spin coating method. Nanoscale Res. Lett. 8(1), 306 (2013)

    ADS  Google Scholar 

  • Iqbal, M., Gleeson, M., Spaugh, B., Tybor, F., Gunn, M., Hochberg, M., Baehr-Jones, T., Bailey, R., Gunn, L.: Label-free bio-sensor arrays based on silicon ring resonators and high speed optical scanning instrumentation. IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010)

    ADS  Google Scholar 

  • Kang, C., Phare, C.T., Vlasov, Y.A., Assefa, S.A., Weiss, S.M.: Photonic crystal slab sensor with enhanced surface area. Opt. Express 18(26), 27930–27937 (2010)

    ADS  Google Scholar 

  • Kang, C., Weiss, S.M., Vlasov, Y.A., Assefa, S.: Optimized light-matter interaction and defect hole placement in photonic crystal cavity sensors. Opt. Lett. 37(14), 2850–2852 (2012)

    ADS  Google Scholar 

  • Khani, S., Hayati, M.: An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 156, 106970 (2021a)

    Google Scholar 

  • Khani, S., Hayati, M.: Optical sensing in single-mode filters based on surface plasmon H-shaped cavities. Opt. Commun. 505, 127534 (2021b)

    Google Scholar 

  • Lai, W.C., Chakravarty, S., Zou, Y., Chen, R.T.: Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing. Opt. Lett. 37(7), 1208–1210 (2012)

    ADS  Google Scholar 

  • Lee, M.R., Fauchet, P.M.: Nanoscale microcavity sensor for single particle detection. Opt. Lett. 32(22), 3284–3286 (2007)

    ADS  Google Scholar 

  • Lequin, R.M.: Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51(12), 2415–2418 (2005)

    Google Scholar 

  • Mishra, G.P., Kumar, D., Chaudhary, V.S., Murmu, G.: Cancer cell detection by a heart-shaped dual-core photonic crystal fiber sensor. Appl. Optic. 59(33), 10321–10329 (2020)

    ADS  Google Scholar 

  • Miyan, H., Agrahari, R., Gowre, K.S., Mahto, M., Jain, K.P.: Computational study of a compact and high sensitive photonic crystal for cancer cells detection. IEEE Sens. J (2022). https://doi.org/10.1109/JSEN.2022.3141124

    Article  ADS  Google Scholar 

  • Mohebzadeh-Bahabady, A., Olyaee, S.: Proposal of a cascade photonic crystal XOR logic gate for optical integrated circuits with investigation of fabrication error and optical power changes. Photonics 8(9), 392 (2021)

    Google Scholar 

  • Olyaee, S., Mohebzadeh-Bahabady, A.: Two-curve-shaped bio-sensor using photonic crystal nano-ring resonators. J. Nanostruct. (2014). https://doi.org/10.7508/JNS.2014.03.007

    Article  Google Scholar 

  • Olyaee, S., Najafgholinezhad, S.: A high quality factor and wide measurement range biosensor based on photonic crystal nanocavity resonator. Sens. Lett. 11(3), 483–488 (2013)

    Google Scholar 

  • Olyaee, S., Seifouri, M., Karami, R., Mohebzadeh-Bahabady, A.: Designing a high sensitivity hexagonal nano-cavity photonic crystal resonator for the purpose of biosensing. Optic. Quant. Electron. (2019). https://doi.org/10.1007/s11082-019-1778-z

    Article  Google Scholar 

  • Parandin, F., Heidari, F., Rahimi, Z., Olyaee, S.: Two-dimensional photonic crystal biosensors: a review. Optic. Laser Technol. 144, 107397 (2021)

    Google Scholar 

  • Piñeros, M., Mery, L., Soerjomataram, I., Bray, F., Steliarova-Foucher, E.: Scaling up the surveillance of childhood cancer: a global roadmap JNCI. J. Natl. Cancer Inst. 113(1), 9–15 (2021)

    Google Scholar 

  • Qavi, A.J., Kindt, J.T., Gleeson, M.A., Bailey, R.C.: Anti-DNA:RNA antibodies and silicon photonic microring resonators: increased sensitivity for multiplexed microRNA detection. Anal. Chem. 83(15), 5949–5956 (2011)

    Google Scholar 

  • Radhouene, M., Chhipa, M.K., Najjar, M., Robinson, S., Suthar, B.: Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sens. 7(4), 311–316 (2017a)

    ADS  Google Scholar 

  • Radhouene, M., Chhipa, M.K., Robinson, S., Suthar, B.: Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength division multiplexing application. Optic. Eng. 56(1), 015107 (2017b)

    ADS  Google Scholar 

  • Radhouene, M., Najjar, M., Chhipa, M.K., Robinson, S., Suthar, B.: Performance optimization of six channels WDM demultiplexer based on photonic crystal structure. J. Ovonic Res. 13(5), 291–297 (2017c)

    Google Scholar 

  • Radhouene, M., Najjar, M., Chhipa, M.K., Robinson, S., Suthar, B.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. Optik 172, 924–929 (2018)

    ADS  Google Scholar 

  • Rakhshani, M.R.: Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. Photonics Nanostruct. Fundam. Appl. 43, 100883 (2021)

    Google Scholar 

  • Saha, B., Goswami, N., Saha, A.: Highly sensitive surface-plasmon-resonance- based fiber optic breast cancer detection by shining a Bessel-Gauss beam: a wave-theory-based approach. Appl. Opt. 60, 7027–7035 (2021)

    ADS  Google Scholar 

  • Scullion, M.G., Di Falco, A., Krauss, T.F.: Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosens. Bioelectron. 27(1), 101–105 (2011)

    Google Scholar 

  • Su, C., Zhu, J.: Novel SPR sensor based on MIM-based waveguide and an asymmetric cross-shaped resonator. Plasmonics 16, 769–775 (2021)

    Google Scholar 

  • Wu, C., et al.: Plasmon-induced transparency and refractive index sensing in side-coupled stub hexagon resonators. Plasmonics 13, 251–257 (2018)

    Google Scholar 

  • Yasli, A.: Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 16, 1605–1612 (2021)

    Google Scholar 

  • Zhu, Y., Cao, H., Tang, L., Yang, X., Li, C.: Immobilization of horseradish peroxidase in three-dimensional macroporous TiO2 matrices for biosensor applications. Electrochim. Acta 54(10), 2823–2827 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Nano-photonics and Optoelectronics Research Laboratory (NORLab), Shahid Rajaee Teacher Training University.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

MHJ: contributed to the design and ideation of the research, performed simulations, and analyzed data, AN: contributed to the design and ideation of the research and wrote the manuscript, MS: reviewed and edited, SO: supervision, edited, and prepared the final draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Olyaee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jokar, M.H., Naraghi, A., Seifouri, M. et al. Photonic crystal bio-sensor for highly sensitive label-free detection of cancer cells. Opt Quant Electron 55, 660 (2023). https://doi.org/10.1007/s11082-023-04921-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04921-7

Keywords

Navigation