Skip to main content
Log in

A reduction technique to solve the (2+1)-dimensional KdV equations with time local fractional derivatives

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper investigates the (2+1)-dimensional Korteweg-de Vries (KdV) equation with a local M-derivative and beta derivative in the time direction. Investigation on the (2+1)-dimensional Korteweg-de Vries (KdV) equation with a local M-derivative and beta derivative in the time direction is important because it provides insights into the behavior of nonlinear waves and has potential applications in various fields such as fluid dynamics, plasma physics, and optics. We apply Nucci’s reduction method to obtain exact solutions of this equation, including solitary wave solutions, periodic wave solutions, and rational solutions. Our results demonstrate the significant effects of the M-derivative and beta derivative on the solutions, including changes in the wave speed and the introduction of additional phase constants. Finally, we discuss the physical implications of these solutions. Overall, this work highlights the importance of considering local derivatives in the study of nonlinear partial differential equations and demonstrates the effectiveness of Nucci’s reduction method in obtaining exact solutions of the (2+1)-dimensional KdV equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be provided on request.

References

  • Adda, F.B., Cresson, J.: About non-differentiable functions. J. Math. Anal. Appl. 263(2), 721–737 (2001)

    MathSciNet  MATH  Google Scholar 

  • Ahmad, H., Khan, T.A.: Variational iteration algorithm I with an auxiliary parameter for the solution of differential equations of motion for simple and damped mass-spring systems. Noise Vib. Worldw. 51(1–2), 12–20 (2020)

    Google Scholar 

  • Ahmad, I., Ahmad, H., Inc, M., Yao, S.-W., Almohsen, B.: Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer. Therm. Sci. 24(Suppl. 1), 95–105 (2020)

    Google Scholar 

  • Ahmad, H., Khan, T.A., Yao, S.-W.: An efficient approach for the numerical solution of fifth-order KdV equations. Open Math. 18(1), 738–748 (2020)

    MathSciNet  MATH  Google Scholar 

  • Ahmad, I., Seadawy, A.R., Ahmad, H., Thounthong, P., Wang, F.: Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method. Int. J. Nonlinear Sci. Numer. Simul. 23(1), 115–122 (2022)

    MathSciNet  MATH  Google Scholar 

  • Ahsan, M., Khan, A.A., Dinibutun, S., Ahmad, I., Ahmad, H., Jarasthitikulchai, N., Sudsutad, W.: The Haar wavelets based numerical solution of Reccati equation with integral boundary condition. Therm. Sci. 27, 93–100 (2023)

    Google Scholar 

  • Akgül, A., Ahmad, H.: Reproducing kernel method for Fangzhu’s oscillator for water collection from air. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6853

    Article  Google Scholar 

  • Akgül, A., Inc, M., Hashemi, M.S.: Group preserving scheme and reproducing kernel method for the Poisson-Boltzmann equation for semiconductor devices. Nonlinear Dyn. 88(4), 2817–2829 (2017)

    MathSciNet  MATH  Google Scholar 

  • Ali, S.N., Ahmad, I., Abu-Zinadah, H., Mohamed, K.K., Ahmad, H.: Multistage optimal homotopy asymptotic method for the K (2, 2) equation arising in solitary waves theory. Therm. Sci. 25, 199–205 (2021)

    Google Scholar 

  • Almutairi, B., Ahmad, I., Almohsen, B., Ahmad, H., Ozsahin, D.U.: Numerical simulations of time-fractional PDEs arising in mathematics and physics using the local meshless differential quadrature method. Therm. Sci. 27, 263–272 (2023)

    Google Scholar 

  • Atangana, A., Baleanu, D., Alsaedi, A.: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys. 14(1), 145–149 (2016)

    Google Scholar 

  • Carpinteri, A., Cornetti, P.: A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Solitons Fractals 13(1), 85–94 (2002)

    MATH  ADS  Google Scholar 

  • Chu, Y.-M., Inc, M., Hashemi, M.S., Eshaghi, S.: Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comput. Appl. Math. 41(6), 1–17 (2022)

    MathSciNet  MATH  Google Scholar 

  • Gazizov, R.K., Kasatkin, A.A.: Construction of exact solutions for fractional order differential equations by the invariant subspace method. Comput. Math. Appl. 66(5), 576–584 (2013)

    MathSciNet  MATH  Google Scholar 

  • Hashemi, M.S.: Numerical study of the one-dimensional coupled nonlinear Sine-Gordon equations by a novel geometric meshless method. Eng. Comput. 37(4), 3397–3407 (2021)

    Google Scholar 

  • Hashemi, M.S.: A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative. Chaos Solitons Fractals 152, 111367 (2021)

    MathSciNet  MATH  Google Scholar 

  • Hashemi, M.S., Baleanu, D.: Lie Symmetry Analysis of Fractional Differential Equations. CRC Press, Boca Raton (2020)

    MATH  Google Scholar 

  • Iqbal, M.A., Wang, Y., Miah, M.M., Osman, M.S.: Study on Date-Jimbo-Kashiwara-Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal Fract. 6(1), 4 (2022)

    Google Scholar 

  • Irshad, H., Shakeel, M., Ahmad, I., Ahmad, H., Tearnbucha, C., Sudsutad, W.: Simulation of generalized time fractional Gardner equation utilizing in plasma physics for non-linear propagation of ion-acoustic waves. Therm. Sci. 27, 121–128 (2023)

    Google Scholar 

  • Kai, Y.: Dynamic properties, Gaussian soliton and chaotic behaviors of general Degasperis-Procesi model. Nonlinear Dyn. 111, 8687–8700 (2023)

    Google Scholar 

  • Kai, Y., Li, Y.: A study of Kudryashov equation and its chaotic behaviors. Waves Random Complex Media (2023)

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  • Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos Interdiscip. J. Nonlinear Sci. 6(4), 505–513 (1996)

    MathSciNet  MATH  Google Scholar 

  • Kolwankar, K.M., Gangal, A.D.: Hölder exponents of irregular signals and local fractional derivatives. Pramana 48(1), 49–68 (1997)

    ADS  Google Scholar 

  • Krause, J.: On the complete symmetry group of the classical Kepler system. J. Math. Phys. 35(11), 5734–5748 (1994)

    MathSciNet  MATH  ADS  Google Scholar 

  • Li, Y., Kai, Y.: Wave structures and the chaotic behaviors of the cubic-quartic nonlinear Schrödinger equation for parabolic law in birefringent fibers. Nonlinear Dyn. 11, 8701–8712 (2023)

    Google Scholar 

  • Liu, X., Ahsan, M., Ahmad, M., Nisar, M., Liu, X., Ahmad, I., Ahmad, H.: Applications of haar wavelet-finite difference hybrid method and its convergence for hyperbolic nonlinear schr ö dinger equation with energy and mass conversion. Energies 14(23), 7831 (2021)

    Google Scholar 

  • Malik, S., Hashemi, M.S., Kumar, S., Rezazadeh, H., Mahmoud, W., Osman, M.: Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quant. Electron. 55(1), 1–13 (2023)

    Google Scholar 

  • Muhammad, T., Ahmad, H., Farooq, U., Akgül, A.: Computational investigation of magnetohydrodynamics boundary of Maxwell Fluid across nanoparticle-filled sheet. Al-Salam J. Eng. Technol. 2(2), 88–97 (2023)

    Google Scholar 

  • Nawaz Khan, M., Ahmad, I., Ahmad, H.: A radial basis function collocation method for space-dependent inverse heat problems. J. Appl. Comput. Mech. 6, 1187–1199 (2020)

    Google Scholar 

  • Nucci, M.C., Leach, P.L.: The determination of nonlocal symmetries by the technique of reduction of order. J. Math. Anal. Appl. 251(2), 871–884 (2000)

    MathSciNet  MATH  Google Scholar 

  • Osman, M.S., Baleanu, D., Adem, A.R., Hosseini, K., Mirzazadeh, M., Eslami, M.: Double-wave solutions and Lie symmetry analysis to the (2+ 1)-dimensional coupled Burgers equations. Chin. J. Phys. 63, 122–129 (2020)

    MathSciNet  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of their Applications. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  • Sahadevan, R., Prakash, P.: On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations. Chaos Solitons Fractals 104, 107–120 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  • Salahshour, S., Ahmadian, A., Abbasbandy, S., Baleanu, D.: M-fractional derivative under interval uncertainty: theory, properties and applications. Chaos Solitons Fractals 117, 84–93 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  • Shakeel, M., Khan, M.N., Ahmad, I., Ahmad, H., Jarasthitikulchai, N., Sudsutad, W.: Local meshless collocation scheme for numerical simulation of space fractional PDE. Therm. Sci. 27, 101–109 (2023)

    Google Scholar 

  • Sousa, J., de Oliveira, E.C.: On the local M-derivative, arXiv preprint arXiv:1704.08186 (2017)

  • Wang, F., Zhang, J., Ahmad, I., Farooq, A., Ahmad, H.: A novel meshfree strategy for a viscous wave equation with variable coefficients. Front. Phys. 9, 701512 (2021)

    Google Scholar 

  • Wang, F., Ali, S.N., Ahmad, I., Ahmad, H., Alam, K.M., Thounthong, P.: Solution of burgers equation appears in fluid mechanics by multistage optimal homotopy asymptotic method. Therm. Sci. 26, 815–821 (2022)

    Google Scholar 

  • Wazwaz, A.-M.: Two new painlevé-integrable (2+ 1) and (3+ 1)-dimensional KdV equations with constant and time-dependent coefficients. Nucl. Phys. B 954, 115009 (2020)

    MATH  Google Scholar 

  • Xia, W.-F., Ahmad, S., Khan, M.N., Ahmad, H., Rehman, A., Baili, J., Gia, T.N.: Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions. Case Stud. Therm. Eng. 32, 101893 (2022)

    Google Scholar 

  • Yang, X.-J.: Advanced Local Fractional Calculus and its Applications. World Science Publisher, Singapore (2012)

    Google Scholar 

  • Yang, X.-J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press, Cambridge (2015)

    MATH  Google Scholar 

  • Yépez-Martínez, H., Rezazadeh, H., Inc, M., Akinlar, M. A.: New solutions to the fractional perturbed Chen–Lee–Liu equation with a new local fractional derivative. Waves Random Complex Media, 1–36 (2021)

  • Zafar, A., Raheel, M., Asif, M., Hosseini, K., Mirzazadeh, M., Akinyemi, L.: Some novel integration techniques to explore the conformable M-fractional Schrödinger-Hirota equation. J. Ocean Eng. Sci. 7, 337–344 (2021)

    Google Scholar 

Download references

Funding

No external funding received regarding this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MM. Data curation: MM. Formal analysis: MSH, HA. Validation: MSH. Writing—original draft: MSH, MM. Writing—review editing: HA.

Corresponding author

Correspondence to Hijaz Ahmad.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest Authors’ contributions All authors contributed equally.

Ethical approval

All the authors demonstrating that they have adhered to the accepted ethical standards of a genuine research study.

Consent to participate

Being the corresponding author, I have consent to participate of all the authors in this research work.

Consent to publish

All the authors are agreed to publish this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M.S., Mirzazadeh, M. & Ahmad, H. A reduction technique to solve the (2+1)-dimensional KdV equations with time local fractional derivatives. Opt Quant Electron 55, 721 (2023). https://doi.org/10.1007/s11082-023-04917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04917-3

Keywords

Navigation