Skip to main content

Advertisement

Log in

Optoelectronic and thermoelectric properties of X2ZnGeS4 (X = Ba, Mg, Sr) using DFT and Boltzmann theory

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Motivated by solar energy activities, we investigate X\(_{2}\)ZnGeS\(_{4}\) (X = Ba, Mg, Sr) semi-conductors using the density functional theory (DFT) calculations implemented in WIEN2K package and Boltzmann theory with the BoltzTraP code. Precisely, we study the electronic, the optical and the thermoelectric properties of such a family of materials using the generalized gradient approximation corrected by the Tran Balaha modified Becke-Johnson exchange potential (GGA+ TB-mBJ) scenarios. We first approach the electronic band structure which shows that the proposed materials involve an indirect band gap. Then, we discus the associated optical aspect by computing the relevant quantities including the absorption coefficient in terms of the energy function. By the help of the BoltzTraP code via the Boltzmann theory, we examine the thermoelectric properties. More precisely, we investigate the Seebeck coefficient, the thermal conductivity, the electrical conductivity, the thermoelectric power factor, and the figure of merit as functions of the chemical potential at different temperatures. Among others, we find a high absorption spectra and a good figure of merit (ZT) suggesting that such materials could be exploited for photovoltaic and thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article.

References

  • Amin, B., Ahmad, I., Maqbool, M., Goumri-Said, S., Ahmad, R.: Ab-initio study of the bandgap engineering of Al\(_{1-x}\)Ga\(_{x}\)N for optoelectronic applications. J. Appl. Phys. 109, 023109 (2011)

    ADS  Google Scholar 

  • Ayeb, Y., Benghia, A., Kanoun, M.B., Arar, R., Lagoun, B., Goumri-Said, S.: Elucidating linear and nonlinear optical properties of defect chalcopyrite compounds ZnX\(_{2}\)Te\(_{4}\) (X= Al, Ga, In) from electronic transitions. Solid State Sci. 87, 39–48 (2018)

    ADS  Google Scholar 

  • Beal, R.E., Slotcavage, D.J., Leijtens, T., Bowring, A.R., Belisle, R.A., Nguye, W.H., Burkhard, G.F., Hoke, E.T., McGehee, M.D.: Cesium Lead Halide Perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7(5), 746 (2016)

    Google Scholar 

  • Benisha Chris A., Routray, S., Massoud, Y. : Analysis of loss mechanisms in czgse thin-film Kesterite Solar Cells: a statistical distribution for defects and traps. ECS J. Solid State Sci. Technol. 11, 105005 (2022)

  • Blaha, P., Schwarz, K., Madsen, Georg K.H.: Dieter Kvasnicka, Joachim Luitz, Robert Laskowski, Fabien Tran and Laurence D. Marks,User’s Guide, WIEN2k 21.1, Vienna University of Technology, Institute of Materials Chemistry, Austria

  • Camargo-Martinez, J.A., Baquero, R.: The band gap problem: the accuracy of the Wien2k code confronted. Revista Mexicana de Fisica 59, 453–459 (2013)

    Google Scholar 

  • Chen, S., Gong, X.G., Walsh, A., Wei, S.H.: Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI 2 compounds. Phys. Rev. B 79, 165211 (2009)

    ADS  Google Scholar 

  • Choubrac, L., Brammertz, G., Barreau, N., Arzel, L., Harel, S., Meuris, M., Vermang, B.: 76 CZGSe Solar Cells Thanks to Optimized CdS Chemical Bath Deposition. Phys. Status Solidi A 215, 1800043 (2018)

    ADS  Google Scholar 

  • El Hamdaoui, J., El-Yadri, M., Farkous, M., Kria, M., Courel, M., Ojeda, M., Pérez, L.M., Tiutiunnyk, A., Laroze, D., Feddi, E.M.: Strain effects on the electronic and optical properties of Kesterite Cu2 ZnGeX4 (X = S, Se): First-Principles Study. Nanomaterials 11(10), 2692 (2021)

    Google Scholar 

  • Goumri-Said, S.: Optoelectronic and vibrational properties of chalcogenides VCu3Q4 (Q= Se, Te) for potential p-type transparent conducting materials: HSE06 approach. J. Solid State Chem. 312, 123190 (2022)

    Google Scholar 

  • Goumri-Said, S., Alrebdi, T.A., Deligoz, E., Ozisik, H., Kanoun, M. Benali.: Revisiting the electronic structures and phonon properties of thermoelectric antimonide-tellurides: spin-orbit coupling induced gap opening in ZrSbTe and HfSbTe. Crystals 11(8), 917 (2021)

    Google Scholar 

  • Guptaa, G.K., Reddy, V.R., Dixit, A.: Impact of excess and disordered Sn sites on Cu2 ZnSnS4 absorber material and device performance: A119Sn Mössbauer study. Mater. Chem. and Phys. 225, (2019)

    Google Scholar 

  • Hajji, M., et al.: Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation. Energy Convers. Manag. 136, 184–191 (2017)

    Google Scholar 

  • Hajji, M., et al.: Strain effects on the electronic and thermoelectric properties of Bi2Te3: A first principles study, Computational Condensed Matter, (2018)

  • Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, (2003)

    ADS  Google Scholar 

  • Ibn-Mohammed, T., Koh, S.C., Reaney, I.M., Acquaye, A., Schileo, G., Mustapha, K.B., Greenough, R.: Perovskite solar cells: an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologiesRenew. Sustain. Energy Rev. 80, (2017)

    Google Scholar 

  • Idrissi, S., Labrim, H., et al.: Study of the solar perovskite CsMBr3 (M=Pb or Ge) photovoltaic materials: Band gap engineering. Solid State Sci.  118 106679 (2021)

    Google Scholar 

  • Idrissi, S., Labrim, H., Bahmad, L., Benyoussef, A.: DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chem. Phys. Lett. 766, (2021)

    Google Scholar 

  • Jeong, S., McGehee, M.D., Cui, Y.: All-back-contact ultra-thin silicon nanocone solar cells with 1.37 power conversion efficiency. Nat Commun 4 2950 (2013)

    ADS  Google Scholar 

  • Kahlaoui, S., Belhorma, B., Labrim, H., Boujnah, M., Regragui, M.: Strain effects on the electronic, optical and electrical properties of Cu2 ZnSnS4: DFT study. Heliyon 6, (2020)

    Google Scholar 

  • Kanoun, M. Benali., Goumri-Said, S.: Tailoring optoelectronic properties of monolayer transition metal dichalcogenide through alloying. Materialia 12, 100708 (2020)

    Google Scholar 

  • Khadka, D.B., Kim, J.: Study of structural and optical properties of kesterite Cu2 ZnGeX4(X = S, Se) thin films synthesized by chemical spray pyrolysis. Cryst. Eng. Comm. 15, 10500 (2013)

    Google Scholar 

  • Khan, W., Goumri-Said, S.: Magnetic and electronic properties of Neptunium chalcogenides from GGA+U+SOC and DFT investigations. J. Magnetism Mag. Mater. 432, 574–580 (2017)

    ADS  Google Scholar 

  • Kodan, N., Auluck, S., Mehta, B.R.: A DFT study of the electronic and optical properties of a photovoltaic absorber material Cu2ZnGeS4 using GGA and mBJ exchange correlation potentials. J. Alloys Compd. 675, 236–243 (2016)

    Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009)

    Google Scholar 

  • Kulbak, M., Cahen, D., Hodes, V.: How important is the organic part of Lead Halide Perovskite photovoltaic cells, Efficient CsPbBr3 Cells. J. Phys. Chem. Lett. 6, 2452 (2015)

    Google Scholar 

  • Lee, S.-M., et al.: Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics. ACS Nano 8, 10507 (2014)

    Google Scholar 

  • Levcenco, S., Dumcenco, D., Huang, Y.S., Tiong, K.K., Du, C.H.: A DFT Study of the Electronic and Optical Properties of Kesterite Phase of Cu2 ZnGeX4. Opt. Mater. 34, 183 (2011)

    ADS  Google Scholar 

  • Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013)

    ADS  Google Scholar 

  • Ludwig, C.D.R., Gruhn, T., Felser, C., Schilling, T., Windeln, J., Kratzer, P.: Indium-Gallium Segregation in CuInxGa1-xxSe2: an ab initio based Monte Carlo Study. Phys. Rev. Lett. 105, 025702 (2010)

    ADS  Google Scholar 

  • Madsen, G.K.H., Singh, D.J.: BoltzTraP A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006)

    ADS  MATH  Google Scholar 

  • Mathew, X., Singh, V.P.: Photovoltaics, solar energy materials and thin films - IMRC 2008, Cancun, Mexico. Thin Solid Films 518(7), 1763 (2010)

    ADS  Google Scholar 

  • Mesbahi, M., Serdouk, F., Benkhedir, M.L.: A DFT study of the electronic and optical properties of Kesterite Phase of Cu2 ZnGeX4 using GGA TB-mBJ and U exchange correlation potentials. Acta Physica Polonica Series A 134, 358 (2018)

    ADS  Google Scholar 

  • Nateprov, A., Merino, J.M., Friedrich, E.J., Fillat, U., Schorr, S., Arushanov, E.: Optical constants of Cu 2 ZnGeS 4 bulk crystals. J. Appl. Phys. 108, 093502 (2010)

    ADS  Google Scholar 

  • Nazif, K.N., Daus, A., Hong, J., Lee, N., Vaziri, S., Kumar, A., Nitta, F., Chen, M., Kananian, S., Islam, R., Kim, K.H., Park, J.H., Poon, A., Brongersma, M.L., Pop, E., Saraswat, K.C.: High-specific-power flexible transition metal Dichalcogenide Solar Cells. Nature Commun. 12, 7034 (2021)

    ADS  Google Scholar 

  • Nouri, Y., et al.: Cu2XSnS4(X = Mn, Fe, Co) semiconductors: Boltzmann theory and DFT investigations. Solid State Commun. 339, 114491 (2021)

    Google Scholar 

  • Rademaker, L.: A Practical Introduction to Density Functional Theory, Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland, (2020)

  • Ramkumar, S. Poyyapakkam., Gillet, Y., Miglio, A., van Setten, M.J., Gonze, X., Rignanese, G.-M.: First-principles investigation of the structural, dynamical and dielectric properties of kesterite, stannite and PMCA phases of Cu2ZnSnS4. Phys. Rev. B 94, 224302 (2016)

    ADS  Google Scholar 

  • Roknuzzaman, M., Zhang, C., Ostrikov, K.K., Du, A., Wang, H., Wang, L., Tesfamichael, T.: Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Sci. Rep. 9, 718 (2019)

    ADS  Google Scholar 

  • Romeo, A., et al.: High-efficiency flexible CdTe solar cells on polymer substrates. Sol. Energy Mater. Sol. Cells 90, 3407 (2006)

    Google Scholar 

  • Scragg, J.J., Ericson, T., Kubart, T., Edoff, M., Platzer-Bjorkman, C.: Chemical insights into the instability of Cu2 ZnSnS4 films during annealing. Chem. Mater. 23(20), 4625 (2011)

    Google Scholar 

  • Sharma, S., Kumar, P.: Quaternary semiconductors Cu2 MgSnS4 and MgSnSe4 as potential thermoelectric materials. J. Phys. Commun. 1, 045014 (2017)

    Google Scholar 

  • Sinagra, C.W., III., Saouma, F.O., Otieno, C.O., Lapidus, S.H., Zhang, J.H., Craig, A.J., Grima-Gallardo, P., Brant, J.A., Rosmus, K.A., Rosello, K.E., Jang, J.I., Aitken, J.A.: Synthesis, structure, linear and nonlinear optical properties of noncentrosymmetric quaternary diamond-like semiconductors, Cu2 ZnGeSe4 (CZGSe) and the novel Cu2 ZnGe2Se7. J. Alloys Compd. 888, 161499 (2021)

    Google Scholar 

  • Ul Haq, B., AlFaify, S., Ahmed, R., Butt, F.K., Laref, A., Goumri-Said, S., Tahir, S.A.: Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications. J. Appl. Phys. 123, 175107 (2018)

    ADS  Google Scholar 

  • Vu, T.V., Tong, H.D., Tran, D.P., Binh, N.T.T., Nguyen, C.V., Phuc, H.V., Do, H.M., Hieu, N.N.: Electronic and optical properties of Janus ZrSSe by density functional theory. RSC Adv. 9, 41058 (2019)

    ADS  Google Scholar 

  • Yadav, D., Pauly, F., Trushin, M.: harge-carrier thermalization in bulk and monolayer CdTe from first principles. Phys. Rev. B 103, 125113 (2021)

    ADS  Google Scholar 

  • Yang, D., Lv, J., Zhao, X., Xu, Q., Fu, Y., Zhan, Y., Zunger, A., Zhang, L.: Functionality-directed screening of Pb-free hybrid organic-inorganic Perovskites with desired intrinsic photovoltaic functionalities. Chem. Mater. 29, 524–538 (2017)

    Google Scholar 

  • Ziti, A., et al.: Study of kesterite CZTS thin films deposited by spin coating technique for photovoltaic applications. Superlattices and Microstruct. 127, 191 (2019)

    ADS  Google Scholar 

  • Ziti, A., et al.: Effect of copper concentration on physical properties of CZTS thin films deposited by dip-coating technique. Appl. Phys. A: Mater. Sci. Process 125(3), 218 (2019)

    ADS  Google Scholar 

  • Ziti, A., et al.: Characteristics of kesterite CZTS thin films deposited by dip-coating technique for solar cells applications. J. Mater. Sci.: Mater. Electronics 30(14), 13134 (2019)

    Google Scholar 

  • Ziti, A., et al.: Investigation of CZTS absorber layer deposited by spin coating technique for photovoltaic applications. Materials Today: Proceedings 53(3), 355 (2022)

    Google Scholar 

Download references

Acknowledgements

One of the authors (H. K), she would like to thank the editor and the anonymous referee for comments, suggestions and scientific helps.

Funding

This research received no specific grant from any funding agency

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to H. Karim.

Ethics declarations

Conflict of interest

The authors would like to declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

There are no human subjects in this paper and informed consent is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karim, H., Labrim, H., Hajji, M. et al. Optoelectronic and thermoelectric properties of X2ZnGeS4 (X = Ba, Mg, Sr) using DFT and Boltzmann theory. Opt Quant Electron 55, 626 (2023). https://doi.org/10.1007/s11082-023-04897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04897-4

Keywords

Navigation