Skip to main content
Log in

Broadband terahertz polarization converter/absorber based on the phase transition properties of vanadium dioxide in a reconfigurable metamaterial

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Based on the phase transition properties of vanadium dioxide (VO2), a metamaterial structure that can be switched between broadband linear polarization converter and broadband absorber is designed in this work. The device consists of a top metal pattern layer, a dielectric layer, and a metal reflection layer. When VO2 is in the insulated state, the metamaterial structure can be used as a linear polarization converter, and the simulation results show that its linear polarization conversion rate exceeds 90% in the frequency range of 2.71–5.18 THz. Meanwhile, it should be noted that the linear polarization conversion rate is almost 100% in 2.85–4.99 THz. Alternatively, when VO2 is in the metallic state, the designed structure can be used as a broadband absorber, and the corresponding results reveal that the broadband absorption is achieved in the frequency range of 2.63–5.27 THz. In addition, the physical principle of the metamaterial is explained using the surface current distribution and impedance matching theory, and the effects of different incident angles and different polarization angles on the metamaterial properties are discussed. The proposed structure offers simple fabrication, wide frequency band operation and multifunctional applications, and can be used in the fields of detection, communication and electromagnetic stealth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

Data and materials sharing not applicable to this article as no data and materials sets were generated or analyzed during the current study.

References

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    ADS  Google Scholar 

  • Chen, Z., Zhang, B., Zhang, Y., et al.: 220GHz outdoor wireless communication system based on a Schottky-diode transceiver. Ieice Electron Expr. 13(9), 20160282 (2016)

    Google Scholar 

  • Cui, T.J., Qi, M.Q., Wan, X., et al.: Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 3, e218 (2014)

    Google Scholar 

  • Cummer, S.A., Popa, B.I.: Wave fields measured inside a negative refractive index metamaterial. Appl. Phys. Lett. 85(20), 4564–4566 (2004)

    ADS  Google Scholar 

  • Das, P., Panwar, R.: Broadband RCS reduction of microstrip antenna in the THz Band. Opt. Quant. Electron. 53(7), 410 (2021)

    Google Scholar 

  • Fu, Y.H., Liu, A.Q., Zhu, W.M., et al.: A Micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Adv. Funct. Mater. 21(18), 3589–3594 (2011)

    Google Scholar 

  • Fu, M.X., Wang, J.Y., Guo, S.H., et al.: A Polarization-insensitive broadband terahertz absorber using patterned graphene. Nanomaterials 12(21), 3763 (2022)

    Google Scholar 

  • Hao, J.M., Yuan, Y., Ran, L.X., et al.: Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99(6), 063908 (2007)

    ADS  Google Scholar 

  • Hashemi, M.R., Cakmakyapan, S., Jarrahi, M.: Reconfigurable metamaterials for terahertz wave manipulation. Rep. Prog. Phys. 80(9), 094501 (2017)

    ADS  Google Scholar 

  • Hu, T., Strikwerda, A.C., Fan, K., et al.: Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103(14), 147401 (2009)

    ADS  Google Scholar 

  • Huang, Y.W., Kaj, K., Chen, C.X., et al.: Broadband terahertz silicon membrane metasurface absorber. ACS Photon. 9(4), 1150–1156 (2022)

    Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., et al.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    ADS  Google Scholar 

  • Laux, E., Genet, C., Skauli, T., et al.: Plasmonic photon sorters for spectral and polarimetric imaging. Nature 2(3), 161–164 (2008)

    Google Scholar 

  • Lei, L., Lou, F., Tao, K.Y., et al.: Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photon. Res. 7(7), 734–741 (2019)

    Google Scholar 

  • Leroy, J., Crunteanu, A., Bessaudou, A., et al.: High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Appl. Phys. Lett. 100(21), 213507 (2012)

    ADS  Google Scholar 

  • Levesque, Q., Makhsiyan, M., Bouchon, P., et al.: Plasmonic planar antenna for wideband and efficient linear polarization conversion. Appl. Phys. Lett. 104(11), 111105 (2014)

    ADS  Google Scholar 

  • Li, J.S., Li, X.J.: Switchable tri-function terahertz metasurface based on polarization vanadium dioxide and photosensitive silicon. Opt. Exp. 30(8), 12823–12834 (2022)

    Google Scholar 

  • Li, Y.J., Wu, J., Wang, C.W., et al.: Tunable broadband metamaterial absorber with single-layered graphene arrays of rings and discs in terahertz range. Phys. Scr. 94, 035703 (2019)

    ADS  Google Scholar 

  • Liao, S.Y., Sui, J.Y., Zhang, H.F.: Switchable ultra-broadband absorption and polarization conversion metastructure controlled by light. Opt. Exp. 30(19), 34172–34187 (2022)

    Google Scholar 

  • Liu, X.L., Starr, T., Starr, A.F., et al.: Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104(20), 207403 (2010)

    ADS  Google Scholar 

  • Liu, Y.J., Yang, H.L., Huang, X.J., et al.: A metamaterial polarization converter with half reflection and half transmission simultaneously. Phys. Lett. A. 389, 127101 (2021)

    Google Scholar 

  • Negm, A., Bakr, M., Howlader, M., et al.: Switching plasmonic resonance in multi-gap infrared metasurface absorber using vanadium dioxide patches. Smart Mater. Struct. 30(7), 075011 (2021)

    ADS  Google Scholar 

  • Peng, Z., Zheng, Z.S., Yu, Z.S., et al.: Broadband absorption and polarization conversion switchable terahertz metamaterial device based on vanadium dioxide. Opt. Laser Technol. 157, 108723 (2023)

    Google Scholar 

  • Pu, M.B., Wang, C.T., Wang, Y.Q., et al.: Subwavelength electromagnetics below the diffraction limit. Acta Physica Sinica. 66(14), 144101 (2017)

    Google Scholar 

  • Rappaport, T.S., Xing, Y.C., Kanhere, O., et al.: Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019)

    Google Scholar 

  • Shalaev, V., Kildishev, A., Klar, T.: Optical negative-index metamaterials: from low to no-loss and from linear to nonlinear optics. Nat. Photon. 1(1), 41–48 (2006)

    Google Scholar 

  • Shi, K.K., Jin, G.Y., Liu, R.J., et al.: Underwater sound absorption performance of acoustic metamaterials with multilayered locally resonant scatterers. Results Phys. 12, 132–142 (2019)

    ADS  Google Scholar 

  • Smith, D.R., Schultz, S., Markos, P., et al.: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B. 65(19), 195104 (2002)

    ADS  Google Scholar 

  • Smith, D.R., Pendry, J.B., Wiltshire, M.C.: Metamaterials and negative refractive index. Science 305(5685), 788–792 (2004)

    ADS  Google Scholar 

  • Song, Z.Y., Chen, A.P., Zhang, J.H.: Terahertz switching between broadband absorption and narrowband absorption. Opt. Exp. 28(2), 2037–2044 (2020)

    Google Scholar 

  • Tang, D.L., Wang, C.T., Zhao, Z.Y., et al.: Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photon. Rev. 9(6), 713–719 (2015)

    ADS  Google Scholar 

  • Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon. 1(2), 97–105 (2007)

    ADS  Google Scholar 

  • Tran, M.C., Pham, V.H., Ho, T.H., et al.: Broadband microwave coding metamaterial absorbers. Sci. Rep. 10(1), 1810 (2020)

    ADS  Google Scholar 

  • Wang, J.C., Wang, X.S., Shao, H.Y., et al.: Peak modulation in multicavity-coupled graphene-based waveguide system. Nanoscale Res. Lett. 12, 9 (2017)

    ADS  Google Scholar 

  • Wang, X.Y., Wang, J.C., Hu, Z.D., et al.: Angle insensitive broadband terahertz wave absorption based on molybdenum disulfide metamaterials. Superlattice Microst. 135, 106246 (2019)

    Google Scholar 

  • Wu, T., Wang, G., Jia, Y., et al.: Dynamic modulation of THz absorption frequency bandwidth, and amplitude via strontium titanate and graphene. Nanomaterials 12(8), 1353 (2022)

    Google Scholar 

  • Xu, T., Wu, Y.K., Luo, X.G., et al.: Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1(5), 59 (2010)

    ADS  Google Scholar 

  • Yadav, V.S., Ghosh, S.K., Bhattacharyya, S., et al.: Graphene-based metasurface fora unable broadband terahertz cross-polarization converter over a wide angle of incidence. Appl. Opt. 57(29), 8720–8726 (2018)

    ADS  Google Scholar 

  • Yan, D.X., Meng, M., Li, J.S., et al.: Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave. Opt. Exp. 28(20), 29843–29854 (2020)

    Google Scholar 

  • Yuan, S., Yang, R.C., Xu, J.P., et al.: Photoexcited switchable single-/dual-band terahertz metamaterial absorber. Mater. Res. Express. 6(7), 075807 (2019)

    ADS  Google Scholar 

  • Yuan, X.G., Chen, J.Y., Wu, J.L., et al.: Graphene-based tunable linear and linear-to-circular polarization converters in the THz band. Results Phys. 37, 105571 (2022)

    Google Scholar 

  • Zhang, S., Zhuo, J.F., Park, Y.S., et al.: Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012)

    ADS  Google Scholar 

  • Zhang, K., Zhang, L., Duan, D., et al.: Wide band terahertz switch of undulated waveguide with VO2 film coated inner wall. J. Lightw. Technol. 36(19), 4401–4407 (2018)

    ADS  Google Scholar 

  • Zhang, M., Zhang, J.H., Chen, A.P., et al.: Vanadium dioxide-based bifunctional metamaterial for terahertz waves. IEEE Photon. J. 12(1), 1–9 (2020)

    Google Scholar 

  • Zhao, J.C., Cheng, Y.Z., Cheng, Z.Z.: Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves. IEEE Photon. J. 10(1), 4600210 (2018a)

    Google Scholar 

  • Zhao, Y.C., Zhang, Y.X., Shi, Q.W., et al.: Dynamic photoinduced controlling of the large phase shift of Terahertz waves via vanadium dioxide coupling nanostructures. ACS Photon. 5(8), 3040–3050 (2018b)

    Google Scholar 

  • Zheng, X.X., Xiao, Z.Y., Ling, X.Y.: A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics 13(1), 287–291 (2018)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under grant No. 51874301, National Key Research & Development Program of China under grant No. 2021YFC2902702 and Primary Research & Development Plan of Xuzhou City under grant No. KC20162.

Author information

Authors and Affiliations

Authors

Contributions

Peng Gao conducted the experimental conception, proposed the design method, performed the simulation calculation and data processing, and completed the paper. Hai Liu provided financial support as well as equipment support, conducted the project management, fundraising, and review of the paper. Cong Chen, Yaowei Dai, Hao Luo, Yue Feng, Yujia Qiao, and Ziyan Ren provided software assistance.

Corresponding author

Correspondence to Hai Liu.

Ethics declarations

Conflict of interests

The authors declare no competing interests. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Chen, C., Dai, Y. et al. Broadband terahertz polarization converter/absorber based on the phase transition properties of vanadium dioxide in a reconfigurable metamaterial. Opt Quant Electron 55, 380 (2023). https://doi.org/10.1007/s11082-023-04685-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04685-0

Keywords

Navigation