Skip to main content

Advertisement

Log in

Detection of cancer cells with selective photonic crystal fiber based on fuzzy logic

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a photonic crystal fiber sensor based on surface plasmon resonance (PCF-SPR) is proposed for diagnosis of cancer cells. Cells refractive index (RI) detection is in the visible to near infrared region. The normal cell RI range is from 1.35 to 1.37, and the cancerous cell RI ranges is from 1.39 to 1.40. Noble plasmonic material gold (Au) is used to excite the surface plasmons and expand the operating wavelength range. The sensor response is investigated using the mode solver based finite element method (FEM) and then a diagnostic algorithm for cancer cells based on fuzzy logic is proposed. In cancer cell diagnosis based on fuzzy logic, three inputs, RI, wavelength and confinement losses (CL), are considered for better sensor selectivity in cell exposure. The output of the fuzzy system is also classified based on three responses, normal cell, cell with medium cancer risk and cell with high risk of cancer, which has a very good performance due to the adaptation of fuzzy rules to the operation of the proposed photonic crystal fiber sensor. Using the amplitude and wavelength interrogation methods, numerical results indicate that the proposed sensor has a maximum amplitude sensitivity (AS) of 448.4 RIU− 1, amplitude resolution (AR) of 2.23 × 10− 5 RIU, maximum wavelength sensitivity (WS) of 20,000 nm/RIU, and wavelength resolution (WR) of 5 × 10− 6 RIU, respectively. This sensor due to its high sensitivity, easy detection, high selectivity against the cell and easy construction, can be used as a useful and cost-effective screening sensor to detect cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Aamir, K.M., Sarfraz, L., Ramzan, M., Bilal, M., Shafi, J., Attique, M.: A fuzzy rule-based system for classification of diabetes. Sensors. 21(23), 8095 (2021)

    Article  ADS  Google Scholar 

  • Abdulrazak, L.F., Hossain, M., Islam, M., Alkhateeb, A.F., Mehedi, I.M., Roy, S.: Plasmonic sensor based on microstructure PCF: performance analysis with outside detecting approach. Opt. Quant. Electron. 54(1), 1–10 (2022)

    Article  Google Scholar 

  • Afsheen, S., Iqbal, T., Khalid, A., Ijaz, M., Bashir, A., Abrar, M., Tahir, M.B., Tehseen, A., Zafar, M., Iqbal, K.: Investigation of Surface Plasmon Polaritons Based Gas Sensor. Far and Near field Analysis (2021)

  • Al Mahfuz, M., Hossain, M.A., Haque, E., Hai, N.H., Namihira, Y., Ahmed, F.: Dual-core photonic crystal fiber-based plasmonic RI sensor in the visible to near-IR operating band. IEEE Sens. J. 20(14), 7692–7700 (2020)

    Article  ADS  Google Scholar 

  • Balasubramani, V., Kuś, A., Tu, H.-Y., Cheng, C.-J., Baczewska, M., Krauze, W., Kujawińska, M.: Holographic tomography: techniques and biomedical applications. Appl. Opt. 60(10), B65–B80 (2021)

    Article  Google Scholar 

  • Bloom, S., Korevaar, E., Schuster, J., Willebrand, H.: Understanding the performance of free-space optics. J. Opt. Netw. 2(6), 178–200 (2003)

    Article  Google Scholar 

  • Chaudhary, V.S., Kumar, D., Kumar, S.: Au-TiO 2 Coated Photonic Crystal Fiber Based SPR Refractometric Sensor for Detection of Cancerous Cells. IEEE Transactions on NanoBioscience (2022)

  • Chen, A., Yu, Z., Dai, B., Li, Y.: Highly sensitive detection of refractive index and temperature based on liquid-filled D-shape PCF. IEEE Photonics Technol. Lett. 33(11), 529–532 (2021)

    Article  ADS  Google Scholar 

  • Elsherif, M., Salih, A.E., Muñoz, M.G., Alam, F., AlQattan, B., Antonysamy, D.S., Zaki, M.F., Yetisen, A.K., Park, S., Wilkinson, T.D.: Optical Fiber Sensors: Working Principle, Applications, and Limitations, p. 2100371. Advanced Photonics Research (2022)

  • Fang, H., Wei, C., Yang, H., Zhao, B., Yuan, L., Li, J.: D-shaped photonic crystal fiber plasmonic sensor based on silver-titanium dioxide composite micro-grating. Plasmonics. 16(6), 2049–2059 (2021)

    Article  Google Scholar 

  • Feng, J., Wang, Q., Li, N.: An intelligent system for heart disease prediction using adaptive neuro-fuzzy inference systems and genetic algorithm. Journal of Physics: Conference Series, (2021)

  • Hasan, M.R., Akter, S., Rifat, A.A., Rana, S., Ali, S.: A Highly Sensitive gold-coated Photonic Crystal fiber Biosensor Based on Surface Plasmon Resonance. Photonics (2017)

  • Huang, T., Meng, F., Huang, H., Wang, L., Wang, L., Liu, Y., Liu, Y., Wang, J., Li, W., Zhang, J.: GALNT8 suppresses breast cancer cell metastasis potential by regulating EGFR O-GalNAcylation. Biochem. Biophys. Res. Commun. 601, 16–23 (2022)

    Article  Google Scholar 

  • Islam, M.R., Iftekher, A., Hasan, K.R., Nayen, M., Islam, S.B., Islam, R., Khan, R.L., Moazzam, E., Tasnim, Z.: Surface plasmon resonance based highly sensitive gold coated PCF biosensor. Appl. Phys. A. 127(2), 1–12 (2021)

    Article  Google Scholar 

  • Islam, M.R., Iftekher, A., Noor, F., Khan, M.R.H., Reza, M., Nishat, M.M.: AZO-coated plasmonic PCF nanosensor for blood constituent detection in near-infrared and visible spectrum. Appl. Phys. A. 128(1), 1–13 (2022)

    Article  Google Scholar 

  • Kaur, V., Singh, S.: Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt. Fiber. Technol. 48, 159–164 (2019)

    Article  ADS  Google Scholar 

  • Kazanskiy, N., Khonina, S., Butt, M., Kaźmierczak, A., Piramidowicz, R.: State-of-the-art optical devices for biomedical sensing applications—A review. Electronics. 10(8), 973 (2021)

    Article  Google Scholar 

  • Kretschmann, E., Raether, H.: Radiative decay of non radiative surface plasmons excited by light. Z. für Naturforschung A. 23(12), 2135–2136 (1968)

    Article  ADS  Google Scholar 

  • Kumar, A., Gupta, R.K., Joshi, A.: Surface plasmon resonance for in-plane birefringence measurement of anisotropic thin organic film. Plasmonics. 16(4), 1023–1028 (2021)

    Article  Google Scholar 

  • Li, Z., Yu, Z., Shen, Y., Ruan, X., Dai, Y.: Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor. IEEE Access. 7, 26641–26651 (2019)

    Article  Google Scholar 

  • Liang, X., Liu, A., Lim, C., Ayi, T., Yap, P.: Determining refractive index of single living cell using an integrated microchip. Sens. Actuators A: Phys. 133(2), 349–354 (2007)

    Article  Google Scholar 

  • Liu, C., Wang, J., Wang, F., Su, W., Yang, L., Lv, J., Fu, G., Li, X., Liu, Q., Sun, T.: Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt. Commun. 464, 125496 (2020a)

    Article  Google Scholar 

  • Liu, C., Yang, L., Su, W., Wang, F., Sun, T., Liu, Q., Mu, H., Chu, P.K.: Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 382, 162–166 (2017)

    Article  ADS  Google Scholar 

  • Liu, Q., Sun, J., Sun, Y., Ren, Z., Liu, C., Lv, J., Wang, F., Wang, L., Liu, W., Sun, T.: Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film. Opt. Mater. 102, 109800 (2020b)

    Article  Google Scholar 

  • Liu, Q., Tai, S., Lu, W., Sun, J., Lv, T., Liu, C., Sun, Y., Lv, J., Liu, W., Sun, T.: Design of pure silica-based photonic crystal fiber for supporting 114 OAM modes transmission. J. Opt. 23(9), 095701 (2021)

    Article  ADS  Google Scholar 

  • Momota, M.R., Hasan, M.R.: Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. 76, 287–294 (2018)

    Article  ADS  Google Scholar 

  • Nguyen, L.V., Nguyen, C.C., Carneiro, G., Ebendorff-Heidepriem, H., Warren-Smith, S.C.: Sensing in the presence of strong noise by deep learning of dynamic multimode fiber interference. Photonics Res. 9(4), B109–B118 (2021)

    Article  Google Scholar 

  • Oyetade, I.S., Ayeni, J.O., Ogunde, A.O., Oguntunde, B.O., Olowookere, T.A.: Hybridized deep convolutional neural network and fuzzy support vector machines for breast cancer detection. SN Comput. Sci. 3(1), 1–14 (2022)

    Article  Google Scholar 

  • Phan, T.G., Croucher, P.I.: The dormant cancer cell life cycle. Nat. Rev. Cancer. 20(7), 398–411 (2020)

    Article  Google Scholar 

  • Qi, J., Xie, F., Liu, S., Yao, C., Liu, W., Cai, G., Liao, G.: q. Huaier granule combined with tegafur gimeracil oteracil potassium promotes stage IIb gastric cancer prognosis and induces gastric cancer cell apoptosis by regulating livin. BioMed Research International, 2020. (2020)

  • Ramola, A., Marwaha, A., Singh, S.: Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl. Phys. A. 127(9), 1–20 (2021)

    Article  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Chow, D.M., Shee, Y.G., Ahmed, R., Adikan, F.R.M.: Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors. 15(5), 11499–11510 (2015)

    Article  ADS  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Shee, Y., Shawon, M.J., Adikan, F.M.: A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng. 140, 1–7 (2016)

    Article  Google Scholar 

  • Sajedi, S.N., Maadani, M., Nesari Moghadam, M.: F-LEACH: a fuzzy-based data aggregation scheme for healthcare IoT systems. J. Supercomputing. 78(1), 1030–1047 (2022)

    Article  Google Scholar 

  • Salimullah, S.M., Hossain, M.S., Faisal, M.: Efficient and wide supercontinuum generation in dispersion engineered tellurite clad as 2 S 3 core photonic crystal fiber within 1 mm of fiber length. Opt. Eng. 60(6), 066110 (2021)

    Article  ADS  Google Scholar 

  • Selvendran, S., Susheel, A., Tarun, P., Muthu, K.E., Raja, A.S.: A novel surface plasmon based photonic crystal fiber sensor. Opt. Quant. Electron. 52(6), 1–12 (2020)

    Article  Google Scholar 

  • Shafkat, A.: Analysis of a gold Coated Plasmonic Sensor Based on a Duplex core Photonic Crystal fiber, vol. 28, p. 100324. Sensing and Bio-Sensing Research (2020)

  • Shakya, A.K., Singh, S.: Design and analysis of dual polarized au and TiO2-coated photonic crystal fiber surface plasmon resonance refractive index sensor: an extraneous sensing approach. J. Nanophotonics. 15(1), 016009 (2021)

    Article  ADS  Google Scholar 

  • Shibayama, J., Shimizu, K., Yamauchi, J., Nakano, H.: Surface plasmon resonance waveguide sensor in the terahertz regime. J. Lightwave Technol. 34(10), 2518–2525 (2016)

    Article  ADS  Google Scholar 

  • Sohi, P.A., Singh, P., Kahrizi, M.: Localized surface plasmon resonance biosensor designed for high refractive index volatile organic compound (VOC) biomarkers detection in visible spectrum. Optik. 257, 168748 (2022)

    Article  ADS  Google Scholar 

  • Takemura, K.: Surface plasmon resonance (SPR)-and localized SPR (LSPR)-based virus sensing systems: optical vibration of nano-and micro-metallic materials for the development of next-generation virus detection technology. Biosensors. 11(8), 250 (2021)

    Article  Google Scholar 

  • Umapathi, R., Park, B., Sonwal, S., Rani, G.M., Cho, Y., Huh, Y.S.: Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol. 119, 69–89 (2022)

    Article  Google Scholar 

  • Wang, Q., Ren, Z.-H., Zhao, W.-M., Wang, L., Yan, X., Zhu, A., Qiu, F., Zhang, K.-K.: (2022). Research advances on surface plasmon resonance biosensors. Nanoscale.

  • Xue, Y., Wang, Y., Liang, J.: A self-adaptive gradient descent search algorithm for fully-connected neural networks. Neurocomputing. 478, 70–80 (2022)

    Article  Google Scholar 

  • Zhou, X., Wang, E., Han, Q., Yuan, H., Li, J.: A large birefringence and high nonlinearity liquid crystal photonic crystal fiber with low confinement loss. Opt. Fiber. Technol. 65, 102610 (2021)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Seyede Mahboobeh Mousavi monazah: Conceptualization, Methodology, Visualization, Data curation, Writing-original draft. Farzin Emami: Writing-review & editing. Mohammad Reza Salehi: Supervision, Project administration. Atekeh Hajilari: Supervision.

Corresponding author

Correspondence to Seyede Mahboobeh Mousavi Monazah.

Ethics declarations

Ethical Approval

This declaration is “not applicable”.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi Monazah, S.M., Emami, F., Salehi, M.R. et al. Detection of cancer cells with selective photonic crystal fiber based on fuzzy logic. Opt Quant Electron 55, 440 (2023). https://doi.org/10.1007/s11082-023-04667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04667-2

Keywords

Navigation