Skip to main content
Log in

Synthesis, physical, optical characteristics, neutron/γ-rays shielding capacity of newly arsenic glasses: experimental, theoretical, and simulation investigations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A melt quenching procedure was used to create newly created arsenic glasses with chemical compositions of (70 − x)B2O3-15CaO-15Li2O-xAs2O3: x = 0 (As0)–20 (As20) mol percent in stages of 5 mol percent. Physical and optical properties of the prepared glasses have been investigated. In the broad photon energy range of 0.015–15 MeV, gamma-radiation and neutron shielding capacities have been evaluated. XRD measurements verified that the syntheized arsenic glasses are in amorphous state. The density of the manufactured arsenic glasses gradually increased from 2.410 g/cm3 for the As0 glass sample to 2.760 g/cm3 for the As20 glass sample. For the glasses containing 0, 5, 10, 15, and 20 mol% As2O3, respectively, the optical energy band gap (Eg) was 2.61, 2.58, 2.54, 2.51 and 2.49 eV, and the optical linear (no) refractive index was 2.498, 2.507, 2.518, 2.527, and 2.533. The values of the mass attenuation coefficient (µm) that are obtained when As2O3 is inserted into the glass matrix are directly positively impacted. All arsenic glasses had a lowest µmm)min value of 0.02 cm2/g at 15 MeV, while the maximum µmm)max values were 3.76, 13.22, 21.18, 27.98, and 33.84 cm2/g for As0, As5, As10, As15, and As20, respectively, at 0.015 MeV. The As As20 glass attained the lowest values of the half value layer parameter (T1/2), which ranged from 0.007 cm at 0.015 MeV to 10.64 cm at 15 MeV. The behavior of the half-tenth layer (T1/10) and mean free path (λ) is identical to that of the T1/2. For As0, As5, As10, As15, and As20 glasses, respectively, the measured values of FNRCS in cm−1 were 0.1071, 0.1040, 0.1016, 0.1003, and 0.0971 cm−1. Our results are contrasted with some concrete and glass findings. The outcome showed that the optimum glasses for shielding against neutrons and gamma rays are As0 and As20, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdel-Aziz, A.M., Elsad, R.A., Ahmed, E.M., Rammah, Y.S., El-Agawany, F.I., Shams, M.S.: Physical, FTIR, ultrasonic, and dielectric characteristics of calcium lead-borate glasses mixed by Nd2O3/Er2O3 rare earths: experimental study. J. Mater. Sci. Mater Electron 32, 19966–19979 (2021). https://doi.org/10.1007/s10854-021-06521-1

    Article  Google Scholar 

  • Abouhaswa, A.S., El-Agawany, F.I., Ahmed, E.M., Rammah, Y.S.: Optical, magnetic characteristics, and nuclear radiation shielding capacity of newly synthesized barium boro-vanadate glasses: B2O3–BaF2–Na2O–V2O5. Radiat. Phys. Chem. 192, 109922-109930 (2022). https://doi.org/10.1016/j.radphyschem.2021.109922

    Article  Google Scholar 

  • Alsaif N.A.M., Elsad R.A., Abdel-Aziz A. M., Ahmed E. M., Rammah Y.S., Misbah M.H., Shams M.S.: Linear optical characteristics as well as gamma-ray shielding capabilities of quaternary lithium-zinc borate glasses with Y3+ ions. Optical Materials 131, 112673-112681 (2022)

    Article  Google Scholar 

  • Alsaif N.AM, Elsad R.A., Sadeq M.S., Rammah Y.S., Ahmed E. M., El-Hamalawy A.A., Shams M.S.: Antimony (III) Oxide-Reinforced Lithium-Calcium Borate Glasses: Preparation and Characterization of Physical, Optical, and γ-Ray Shielding Behavior Through Experimental and Theoretical Methods. Journal of Material Science-Materials in Electronics, 51, 5869-5879 (2022)

    Article  ADS  Google Scholar 

  • Babu A.C., Reddy D.V.K., SambasivaRao T., Reddy M.R.: The role of vanadium ions in PbO-As2O3 glasses. Materials Today 5(13), 26223–26231 (2018)

  • Bashter, I.I.: Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Article  Google Scholar 

  • Battistoni, G., Cerutti, F., Fassò, A., Ferrari, A., Muraro, S. Ranft, J., Roesler, S., Sala, P.R.: The FLUKA code: description and benchmarking. In: AIP Conference Proceedings. AIP, pp. 31–49. (2007) https://doi.org/10.1063/1.2720455

  • Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R., Zucker, D.S.: XCOM: photon cross sections database. NIST Stand. Ref. Database 8, 87–3597 (1998)

    Google Scholar 

  • Chen, Q.: Optical linear & nonlinearity and Faraday rotation study on V2O5 nanorod doped glass and glass-ceramic: impact of optical basicity. J. Alloys Compd. 836, 155490-155503 (2020)

    Article  Google Scholar 

  • Clare, A.G., Wright, A.C., Sinclair, R.N., Galeener F.L., Geissberger, A.E.:A NEUTRON DIFFRACTION INVESTIGATION OF THE STRUCTURE OF VITREOUS As203. J. Alloys Compd. 111, 123–138 (1989)

  • Dimitrov, V., Komatsu, T.: Electronic polarizability, optical basicity and nonlinear optical properties of oxide glasses. J. Non-Cryst. Solids 249, 160–179 (1999)

    Article  ADS  Google Scholar 

  • Durrant, P.J., Durrant, B.: Introduction to Advanced Inorganic Chemistry, 2nd ed. Logemans, London 664-670 (1970)

    Google Scholar 

  • El-Khayatt, A.: Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy 37(2), 218–222 (2010)

    Article  Google Scholar 

  • Gaikwad, D.K., Sayyed, M.I., Obaid, S.S., Issa, S.A.M., Pawar, P.P.: Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses. J. Alloy. Compd. 765, 451–458 (2018)

    Article  Google Scholar 

  • Henaish, A.M.A., Zakaly, H.M.H., Saudi Shams, H.A., Issa, A.M., Tekin, H.O., Hessein, M.M., Rammah, Y.S.: Thermal and optical characteristics of synthesized sand/CeO2 glasses: experimental approach. J. Electron. Mater. 2022, 1–7 (2022)

    Google Scholar 

  • Ibrahim, A., Farag, M.A., Sadeq, M.S.: Towards highly transparent tungsten zinc sodium borate glasses for radiation shielding purposes. Ceram. Int. 48(9), 12079–12090 (2022)

    Article  Google Scholar 

  • Kirdsiri, K., Kaewkhao, J., Pokaipisit, A., Chewpraditkul, W., Limsuwan, P.: Gamma-rays shielding properties of xPbO: (100–x)B2O3 glasses system at 662 keV. Ann. Nucl. Energy 36, 1360–1365 (2009)

    Article  Google Scholar 

  • Mallur, S.B., Czarnecki, T., Adhikari, A., Babu, P.K.: Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses. Mater. Res. Bull. 68, 27–34 (2015)

    Article  Google Scholar 

  • Mansour, S.F., Wageh, S., Alotaibi, M.F., Abdo, M.A., Sadeq, M.S.: Impact of bismuth oxide on the structure, optical features and ligand field parameters of borosilicate glasses doped with nickel oxide. Ceram. Int. 47, 21443–21449 (2021)

    Article  Google Scholar 

  • Mostafa, A.M.A., Zakaly, H.M.H., Pyshkina, M., Issa, S.A.M., Tekin, H.O., Sidek, H.A.A., Matori, K.A., Zaid, M.H.M.: Multi-objective optimization strategies for radiation shielding performance of BZBB glasses using Bi2O3: a FLUKA Monte Carlo code calculations. J. Market. Res. 9(6), 12335–12345 (2020)

    Google Scholar 

  • Nassau, K., Chadwick, D.L.: Glass formation in the system GeO2-Bi2O3-Tl2O. J. Am. Ceram. Soc. 65, 197–202 (1982)

    Google Scholar 

  • Perişanoğlu, U., El-Agawany, F.I., Kavaz, E., Al-Buriahi, M., Rammah, Y.S.: Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceram. Int. 46, 3190–3202 (2020). https://doi.org/10.1016/j.ceramint.2019.10.023

    Article  Google Scholar 

  • Raghavaiah, B.V., Veeraiah, N.: The role of As2O3 on the stability and some physical properties of PbO–Sb2O3 glasses. J. Phys. Chem. Solids 65, 1153–1164 (2004)

    Article  ADS  Google Scholar 

  • Rammah, Y. S., Alsaif, N. A., Khattari, Z. Y., Shams, M. S., Elsad, R. A., Sadeq, M. S.: Synthesis, physical, FTIR, and optical characteristics of B2O3 center dot CaO center dot ZnO glasses doped with Nb2O5 oxide: Experimental investigation. J. Mater. Sci-Mater. Electron. 33(30), 23749–23760 (2022)

    Article  Google Scholar 

  • Rammah, Y.S., Sayyed, M.I., Abohaswa, A.S., Tekin, H.O.: FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A Mater. Sci. Process. 124, 650–659 (2018). https://doi.org/10.1007/s00339-018-2069-4

    Article  Google Scholar 

  • Rammah, Y.S., Mahmoud, K.A., Sadeq, M.S., Haily, E., Bih, L., Ahmed, E.M., El-Agawany, F.I.: Optical and radiation shielding properties of titano-phosphate glasses: infuence of BaO. J. Aust. Ceram. Soc. 58, 867-880 (2022). https://doi.org/10.1007/s41779-022-00734-1

    Article  Google Scholar 

  • Sadeq M.S., Morshidy H.Y.: Effect of mixed rare-earth ions on the structure and optical properties of some borate glasses. Ceram. Int. 45, 18327–18332 (2019)

    Article  Google Scholar 

  • Sadeq, M.S., Morshidy, H.Y.: Effect of samarium oxide on structural, optical and electrical properties of some alumino-borate glasses with constant copper chloride. J. Rare Earths 38, 770–775 (2020)

    Article  Google Scholar 

  • Sadeq, M.S., El-bashir, B.O., Almuqrin, A.H., Sayyed, M.I.: The tungsten oxide within phosphate glasses to investigate the structural, optical and shielding properties variations. J. Mater. Sci. Mater. Electron. 32, 12402–12413 (2021). https://doi.org/10.1007/s10854-021-05871-0

    Article  Google Scholar 

  • Şakar, E., Özpolat, Ö.F., Alım, B., Sayyed, M.I., Kurudirek, M.: Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496-108508 (2020)

    Article  Google Scholar 

  • Saudi, H.A., Zakaly, H.M.H., Issa, S.A.M., Tekin, H.O., Hessien, M.M., Rammah, Y.S., Henaish, A.M.A.: Fabrication, FTIR, physical characteristics and photon shielding efficacy of CeO2/sand reinforced borate glasses: experimental and simulation studies. Radiat. Phys. Chem. 191, 109837–109851 (2022). https://doi.org/10.1016/j.radphyschem.2021.109837

    Article  Google Scholar 

  • Sayyed, M.I., Ibrahim, A., Abdo, M.A., Sadeq, M.S.: The combination of high optical transparency and radiation shielding effectiveness of zinc sodium borate glasses by tungsten oxide additions. J. Alloy. Compd. 904, 164037–164044 (2022)

    Article  Google Scholar 

  • Singh, V.P., Badiger, N.M.: Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys. Chem. 41, 276–283 (2015)

    Article  Google Scholar 

  • Srinivasarao, G., Veeraiah, N.: Study on various physical properties of PbO–As2O3 glasses containing anganese ions. J. Alloy Compd. 327, 52–65 (2001)

    Article  Google Scholar 

  • Srinivasarao, G., Veeraiah, N.: The role of iron ions on the structure and certain physical properties of PbO–As2O3 glasses. J. Phys. Chem. Solids 63, 705–717 (2002)

    Article  ADS  Google Scholar 

  • Tekin, H.O., Issa, S.A.M., Ahmed, E.M., Rammah, Y.S.: Lithium-fluoro borotellurite glasses: nonlinear optical, mechanical, characteristics and gamma radiation protection characteristics. Radiat. Phys. Chem. 190, 109819–109832 (2022). https://doi.org/10.1016/j.radphyschem.2021.109819

    Article  Google Scholar 

  • Ticha, H., Tichy, L.: Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    Google Scholar 

  • Yasaka, P., Pattanaboonmee, N., Kim, H.J., Limkitjaroenporn, P., Kaewkhao, J.: Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Ann. Nucl. Energy 68, 4–9 (2014)

    Article  Google Scholar 

  • Zakaly, H.M.H., Rashad, M., Tekin, H.O., Saudi, H.A., Issa, S.A.M., Henaish, A.M.A.: Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: an experimental and simulation study. Opt. Mater. Amst. 114, 110942–110953 (2021). https://doi.org/10.1016/j.optmat.2021.110942

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2023R60), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2023R60), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review, Editing, and Visualization.

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaly, H.M.H., Alsaif, N.A.M., Shams, M.S. et al. Synthesis, physical, optical characteristics, neutron/γ-rays shielding capacity of newly arsenic glasses: experimental, theoretical, and simulation investigations. Opt Quant Electron 55, 365 (2023). https://doi.org/10.1007/s11082-023-04610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04610-5

Keywords

Navigation