Skip to main content
Log in

Role of nonlinear saturation on modulational instability in Kundu–Eckhaus equation with the presence of inter modal, XPM and SPM

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

With cross phase modulation (XPM), conventional saturable nonlinearity (CSNL), and self phase modulation (SPM) present, we analyze the effect of inter modal dispersion on the modulation instability (MI) of an optical rogue waves in the Kundu-Eckhaus (KE) equation. We take into account the two component KE model without the four wave mixing term and with intermodal dispersion along with CSNL. On the basis of the conventional linear stability analysis, the MI criterion for the KE equation is determined. Using the MI criterion, it is possible to determine how inter modal dispersion and CSNL affect the MI of an optical rogue waves in a birefringent fiber when XPM and SPM are present. Through a graphical illustration of MI gain, the effects of intermodal dispersion and CSNL on MI in optical fiber for the presence of SPM and XPM are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that has been used is confidential.

References

  • Arshed, A., Biswas, M., Abdelaty, Q., Zhou, S.P., Moshokoa, M.: Belic, Optical soliton perturbation with kundu–eckhaus equation by exp(ϕ(ξ))-expansion scheme and G′∕G2-expansion method. Optik 172, 79–85 (2018)

    ADS  Google Scholar 

  • Bayindir, C.: Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field. Phys. Rev. E 93, 032201 (2016)

    ADS  MathSciNet  Google Scholar 

  • Bayındır, C.: Rogue wave spectra of the Kundu-Eckhaus equation. Phys. Rev. E 93, 062215 (2016)

    ADS  MathSciNet  Google Scholar 

  • Bayındır, C.: Self-localized solutions of the Kundu-Eckhaus equation in nonlinear waveguides. Res. Phys. 14, 102362 (2019)

    Google Scholar 

  • Bayındır, C., Yurtbak, H.: A Split-step fourier scheme for the dissipative Kundu-Eckhaus equation and its rogue wave dynamics. Twms J. Appl. Eng. Math. 11, 56–65 (2021)

    Google Scholar 

  • Biswas, A.: Soliton solutions of the perturbed resonant nonlinear Schrodinger’s equation with full nonlinearity by semi-inverse variational principle. Quantum Phys. Lett. 1(2), 79–89 (2012)

    Google Scholar 

  • Biswas, A., Zhou, Q., Ullah, M.Z., Asma, M., Moshokoa, S.P., Belic, M.: Perturbation theory and optical soliton cooling with anti-cubic nonlinearity. Optik 142, 73–76 (2017)

    ADS  Google Scholar 

  • Biswas, A., Yildirim, Y., Yasar, E., Triki, H., Alshomrani, A.S., Ullah, M.Z., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton perturbation with full nonlinearity for Kundu-Eckhaus equation by modified simple equation method. Optik 157, 1376–1380 (2018)

    ADS  Google Scholar 

  • Biswas, A., Yıldırım, Y., Yaşar, E., Zhou, Q., Khan, S., Adesanya, S., Belic, M.: Optical soliton molecules in birefringent fibers having weak non-local nonlinearity and four-wave mixing with a couple of strategic integration architectures. Optik 179, 927–940 (2019)

    ADS  Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., Belic, M.R.: Highly dispersive optical solitons with cubic-quintic-septic law by F-expansion. Optik 182, 897–906 (2019a)

    ADS  Google Scholar 

  • Biswas, A., Arshed, S., Ekici, M., Zhou, Q., Moshokoa, S.P., Alfiras, M., Belic, M.: Optical solitons in birefringent fibers with Kundu-Eckhaus equation. Optik 178, 550–556 (2019b)

    ADS  Google Scholar 

  • Brainis, E., Amans, D., Massar, S.: Scalar and vector modulation instabilities induced by vacuum fluctuations in fibers: Numerical study. Phys. Rev. A 71, 023808 (2005)

    ADS  Google Scholar 

  • Chabchoub, A., Hoffmann, N., Tobisch, E., Waseda, T., Akhmediev, N.: Drifting breathers and Fermi-Pasta–Ulam paradox for water waves. Wave Motion 90, 168–174 (2019)

    MathSciNet  MATH  Google Scholar 

  • Chai, X., Zhang, Y.: The dressing method and dynamics of soliton solutions for the Kundu-Eckhaus equation. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-08106-x

    Article  Google Scholar 

  • Dalt, N.D., Angelis, C.D., Nalesso, G.F., Santagiustina, M.: Dynamics of induced modulational instability in waveguides with saturable nonlinearity. Opt. Commun. 121, 69–72 (1995)

    ADS  Google Scholar 

  • Drummond, P.D., Kennedy, T.A.B., Dudley, J.M., Leonhardt, R., Harvey, J.D.: Cross-phase modulation instability in high-birefringence fibers. Opt. Commun. 78, 137–142 (1990)

    ADS  Google Scholar 

  • Ebadi, G., Yildirim, A., Biswas, A.: Chiral solitons with Bohm potential using GG method and exp-function method. Rom. Rep. Phys. 64, 357–366 (2012)

    Google Scholar 

  • Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Zhou, Q., Triki, H., Zaka Ullah, M., Moshokoa, S.P., Biswas, A.: Optical solitons in birefringent fibers with Kerr nonlinearity by Exp-function method. Optik 131, 964–976 (2017)

    ADS  Google Scholar 

  • Ekici, M., Sonmezoglu, A., Biswas, A., Belic, M.R.: Optical solitons in (2+1)–Dimensions with Kundu-Mukherjee-Naskar equation by extended trial function scheme, Chinese. J. Phys. 57, 72–77 (2019)

    Google Scholar 

  • Ganapathy, R., Malomed, B.A., Porsezian, K.: Modulational instability and generation of pulse trains in asymmetric dual-core nonlinear optical fibers. Phys. Lett. A 354(5–6), 366–372 (2006)

    ADS  Google Scholar 

  • Jaradat, M.M.M., Batool, A., Butt, A.R., Raza, N.: New solitary Wave and computational solitons for Kundu-Eckhaus equation. Res. Phys. 43, 106084 (2022)

    Google Scholar 

  • Kennedy, R.E., Popov, S.V., Taylor, J.R.: Ytterbium gain band self-induced modulation instability laser. Opt. Lett. 31(2), 167–168 (2006)

    ADS  Google Scholar 

  • Kostylev, M., Ustinov, A.B., Drozdovskii, A.V., Kaliniko, B.A., Ivanov, E.: To words experimental observation of parametrically squeezed states of microwave magnons in yttrium iron garnet flms. Phys. Rev. B 100(2), 020401 (2019)

    ADS  Google Scholar 

  • Liu, X.M., Zhang, X.G., Lin, N., Zhang, T., Yang, B.J.: Modulation instability in non-Kerr-like optical fibers near the zero dispersion point. Chin. J. Lasers B 9, 79–84 (2000)

    ADS  Google Scholar 

  • Liu, X., Liu, W., Triki, H., Zhou, Q., Biswas, A.: Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrödinger equation. Nonlinear Dynam. 96, 801–809 (2019a)

    MATH  Google Scholar 

  • Liu, W.J., Liu, M.L., Liu, B., Quhe, R.G., Lei, M., Fang, S.B., Teng, H., Wei, Z.Y.: Nonlinear optical properties of MoS2-WS2 hetero structure in fiber lasers. Opt. Exp. 27, 6689 (2019b)

    Google Scholar 

  • Liu, M., Ouyang, Y., Hou, H., Liu, W., Wei, Z.: Q-switched fiber laser operating at 1.5 μm based on WTe 2. Chin. Opt. Lett. 17(2), 020006 (2019)

    ADS  Google Scholar 

  • Liu, M., Liu, W., Wei, Z.: MoTe2 saturable absorber with high modulation depth for erbium-doped fiber laser. J. Lightw. Technol. 37(13), 3100 (2019d)

    ADS  Google Scholar 

  • Liu, W.J., Liu, M.L., Lin, S., Liu, J.C., Lei, M., Wu, H., Dai, C.Q., Wei, Z.Y.: Synthesis of high quality silver nanowires and their applications in ultrafast photonics. Opt. Express 27, 16440 (2019e)

    ADS  Google Scholar 

  • Lyra, M.L., Gouveia-Neto, A.S.: Saturation effects on modulation instability in non-Kerr-like monomode optical fibers. Opt. Commun. 108, 117–120 (1994)

    ADS  Google Scholar 

  • Mamyshev, P.V., Bosshard, C., Stegeman, G.I.: Generation of a periodic array of dark spatial solitons in the regime of effective amplification. J. Opt. Soc. Amer. B 11(7), 1254–1260 (1994)

    ADS  Google Scholar 

  • Mirzazadeh, M., Yıldırım, Y., Yaar, E., Triki, H., Zhou, Q., Moshokoa, S.P., Ullah, M.Z., Seadawy, A.R., Biswas, A., Belic, M.: Optical solitons and conservation law of Kundu-Eckhaus equation. Optik 154, 551–557 (2018)

    ADS  Google Scholar 

  • Mohanraj, P., Sivakumar, R.: Saturation effects on modulational instability in birefringent media with the help of Kundu-Ekchaus equation. Optik 245, 167687 (2021a)

    ADS  Google Scholar 

  • Mohanraj, P., Sivakumar, R.: Saturable higher nonlinearity effects on the modulational instabilities in three-core triangular configuration couplers. J. Opt. 23, 045502 (2021b)

    ADS  Google Scholar 

  • Mohanraj, P., Sivakumar, R.: Investigation of modulational instability in a coupled Kundu-Ekchaus equation in the presence of modified form of saturable nonlinearity. Optik 248, 168111 (2021c)

    ADS  Google Scholar 

  • Mumtaz, S., Essiambre, R.J., Agrawal, G.P.: Nonlinear propagation in multimode and multicore fibers: generalization of the manakov equations. J. Lightwave Technol. 31(3), 398–406 (2012)

    ADS  Google Scholar 

  • Nielsen, A.U., Garbin, B., Coen, S., Murdoch, S.G., Erkintalo, M.: Coexistence and interactions between nonlinear states with different polarizations in a monochromatically driven passive Kerr resonator. Phys. Rev. Lett. 123(1), 013902 (2019)

    ADS  Google Scholar 

  • Nithyanandan, K., Raja, R.V.J., Porsezian, K., Uthayakumar, T.: A colloquium on the influence of versatile class of saturable nonlinear responses in the instability induced supercontinuum generation. Opt. Fib. Technol. 19(4), 348–358 (2013)

    ADS  Google Scholar 

  • Nithyanandan, K., Raja, R.V.J., Porsezian, K.: Modulational instability in a twin-core fiber with the effect of saturable nonlinear response and coupling coefficient dispersion. Phys. Rev. A 87(4), 043805 (2013)

    ADS  Google Scholar 

  • Parasuraman, E.: Modulational instability criterion for optical wave propagation in birefringent fiber of Kundu-Eckhaus equation. Optik 243, 167429 (2021)

    ADS  Google Scholar 

  • Parasuraman, E.: Effect of inter modal dispersion on modulational instability of optical soliton in Kundu-Eckhaus equation with the presence of SPM and XPM. Optik 270, 170020 (2022)

    ADS  Google Scholar 

  • Qiu, D., He, J., Zhang, Y., Porsezian, K.: The Darboux transformation of the Kundu-Eckhaus equation. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2180), 20150236 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Savescu, M., Khan, K.R., Naruka, P., Jafari, H., Moraru, L., Biswas, A.: Optical solitons in photonic nano wave guides with an improved nonlinear Schrödinger’s equation. J. Comput. Theor. Nanosci. 10, 1182–1191 (2013)

    Google Scholar 

  • Tai, K., Hasegawa, A., Tomita, A.: Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56, 135 (1986)

    ADS  Google Scholar 

  • Tasgal, R.S., Malomed, B.A.: Modulational instabilities in the dual-core nonlinear optical fiber. Phys. Scr. 60, 418 (1999)

    ADS  Google Scholar 

  • Tatsing, P.H., Mohamadou, A., Tiofack, C.G.L.: Modified Kerr-type saturable nonlinearity effect on the modulational instability of nonlinear coupler with a negative-index metamaterial channel. Optik 127(8), 4150–4155 (2016)

    ADS  Google Scholar 

  • Vega-Guzmana, J., Biswas, A., Mahmood, M.F., Zhouf, Q., Khan, S., Moshokoa, S.P.: Dark and singular optical solitons in birefringent fibers with Kundu-Eckhaus equation by undetermined coefficients. Optik 181, 499–502 (2019)

    ADS  Google Scholar 

  • Wang, X., Yang, Bo., Chen, Y., Yang, Y.: Higher-order rogue wave solutions of the Kundu-Eckhaus equation. Phys. Scr. 89, 095210 (2014)

    ADS  Google Scholar 

  • Xie, X.Y., Tian, B., Sun, W.R.: Rogue-wave solutions for the Kundu-Eckhaus equation with variable coefficients in an optical fiber. Nonlinear Dyn. 81, 1349–1354 (2015)

    MathSciNet  MATH  Google Scholar 

  • Yildirim, Y.: Optical solitons to Kundu-Eckhaus equation in the context of birefringent fibers by using of trial equation methodology. Optik 182, 105–109 (2019)

    ADS  Google Scholar 

  • Yıldırım, Y., Biswas, A., Jawad, A.J.A.M., Ekici, M., Zhou, Q., Khan, S., Belic, M.R.: Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. Res. Phys. 16, 102913 (2020)

    Google Scholar 

  • Zhong, X., Cheng, K.: Modulation instability in metamaterials with fourth-order linear dispersion, second-order nonlinear dispersion, and three kinds of saturable nonlinearites. Optik 125(22), 6733–6738 (2014)

    ADS  Google Scholar 

  • Zhou, Q., Zhu, Q., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Rom. Acad. 16, 152–159 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

P. Mohanraj thanks the UGC for providing financial assistance under the RGNF programmed F1-17.1/2015-16/NFST-2015-17-STPON-2332. R. Sivakumar, one of the authors, thanks UGC for supporting this work in part through the major research project grant letter F. No. 37-312/2009 (SR) dated January 12, 2010, as well as DST for funding through the FIST programmed through the order SR/FST / PSII-021/2009 dated August 13, 2010, which will be used to build a basic computing cluster facility. This paper is a dedication in honor of Prof. K. Porsezian, one of the work's research guides, in honor of his love and support while he was alive.

Funding

This research received no specific grant from any funding agency in the public, commercial or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PM carried out the concept and design of the article. RS carried out data interpretation for the article. JK and RK carried out the draught manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. Mohanraj.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \begin{aligned} A_{1} = & \;k^{2} a_{1} - 2kQa_{1} - Q^{2} a_{1} + iQr_{1} u_{0}^{2} - 2iQ\Gamma r_{1} u_{0}^{4} - k\alpha_{1} - Q\alpha_{1} + 3u_{0}^{4} v_{0}^{4} \eta_{1} - 5\Gamma u_{0}^{8} v_{0}^{4} \eta_{1} \\ & \; - 3\Gamma u_{0}^{4} v_{0}^{8} \eta_{1} + 5\Gamma^{2} u_{0}^{8} v_{0}^{8} \eta_{1} + 5u_{0}^{8} \xi_{1} - 9\Gamma u_{0}^{16} \xi_{1} + \omega_{1} + v_{0}^{8} \varsigma_{1} - \Gamma v_{0}^{16} \varsigma_{1} ; \\ \end{aligned} $$
$$ \begin{aligned} A_{2} = & \;k^{2} a_{2} - 2kQa_{2} - Q^{2} a_{2} + iQr_{2} v_{0}^{2} - 2iQ\Gamma r_{2} v_{0}^{4} - k\alpha_{2} - Q\alpha_{2} + 3u_{0}^{4} v_{0}^{4} \eta_{2} - 3\Gamma u_{0}^{8} v_{0}^{4} \eta_{2} \\ & \; - 5\Gamma u_{0}^{4} v_{0}^{8} \eta_{2} + 5\Gamma^{2} u_{0}^{8} v_{0}^{8} \eta_{2} + 5v_{0}^{8} \xi_{2} - 9\Gamma v_{0}^{16} \xi_{2} + \omega_{2} + u_{0}^{8} \varsigma_{2} - \Gamma u_{0}^{16} \varsigma_{2} ; \\ \end{aligned} $$
$$ \begin{aligned} A_{3} = & \;k^{2} a_{1} + 2kQa_{1} - Q^{2} a_{1} - iQr_{1} u_{0}^{2} + 2iQ\Gamma r_{1} u_{0}^{4} - k\alpha_{1} + Q\alpha_{1} + 3u_{0}^{4} v_{0}^{4} \eta_{1} - 5\Gamma u_{0}^{8} v_{0}^{4} \eta_{1} \\ & \; - 3\Gamma u_{0}^{4} v_{0}^{8} \eta_{1} + 5\Gamma^{2} u_{0}^{8} v_{0}^{8} \eta_{1} + 5u_{0}^{8} \xi_{1} - 9\Gamma u_{0}^{16} \xi_{1} + \omega_{1} + v_{0}^{8} \varsigma_{1} - \Gamma v_{0}^{16} \varsigma_{1} ; \\ \end{aligned} $$
$$ \begin{aligned} A_{4} = & \;k^{2} a_{2} + 2kQa_{2} - Q^{2} a_{2} - iQr_{2} v_{0}^{2} + 2iQ\Gamma r_{2} v_{0}^{4} - k\alpha_{2} + Q\alpha_{2} + 3u_{0}^{4} v_{0}^{4} \eta_{2} - 3\Gamma u_{0}^{8} v_{0}^{4} \eta_{2} \\ & \; - 5\Gamma u_{0}^{4} v_{0}^{8} \eta_{2} + 5\Gamma^{2} u_{0}^{8} v_{0}^{8} \eta_{2} + 5v_{0}^{8} \xi_{2} - 9\Gamma v_{0}^{16} \xi_{2} + \omega_{2} + u_{0}^{8} \varsigma_{2} - \Gamma u_{0}^{16} \varsigma_{2} ; \\ \end{aligned} $$
$$ B_{1} = - iQr_{1} u_{0}^{2} + 2iQ\Gamma r_{1} u_{0}^{4} + 2u_{0}^{4} v_{0}^{4} \eta_{1} - 4\Gamma u_{0}^{8} v_{0}^{4} \eta_{1} - 2\Gamma u_{0}^{4} v_{0}^{8} \eta_{1} + 4\Gamma^{2} u_{0}^{8} v_{0}^{8} \eta_{1} + 4u_{0}^{8} \xi_{1} - 8\Gamma u_{0}^{16} \xi_{1} ; $$
$$ B_{2} = iQs_{2} u_{0} v_{0} - 2iQ\Gamma s_{2} u_{0}^{3} v_{0} + 2u_{0}^{3} v_{0}^{5} \eta_{2} - 4\Gamma u_{0}^{7} v_{0}^{5} \eta_{2} - 2\Gamma u_{0}^{3} v_{0}^{9} \eta_{2} + 4\Gamma^{2} u_{0}^{7} v_{0}^{9} \eta_{2} + 4u_{0}^{7} v_{0} \varsigma_{2} - 8\Gamma u_{0}^{15} v_{0} \varsigma_{2} ; $$
$$ B_{3} = - iQs_{2} u_{0} v_{0} + 2iQ\Gamma s_{2} u_{0}^{3} v_{0} + 2u_{0}^{3} v_{0}^{5} \eta_{2} - 4\Gamma u_{0}^{7} v_{0}^{5} \eta_{2} - 2\Gamma u_{0}^{3} v_{0}^{9} \eta_{2} + 4\Gamma^{2} u_{0}^{7} v_{0}^{9} \eta_{2} + 4u_{0}^{7} v_{0} \varsigma_{2} - 8\Gamma u_{0}^{15} v_{0} \varsigma_{2} ; $$
$$ B_{4} = iQs_{1} u_{0} v_{0} - 2iQ\Gamma s_{1} u_{0} v_{0}^{3} + 2u_{0}^{5} v_{0}^{3} \eta_{1} - 2\Gamma u_{0}^{9} v_{0}^{3} \eta_{1} - 4\Gamma u_{0}^{5} v_{0}^{7} \eta_{1} + 4\Gamma^{2} u_{0}^{9} v_{0}^{7} \eta_{1} + 4u_{0} v_{0}^{7} \varsigma_{1} - 8\Gamma u_{0} v_{0}^{15} \varsigma_{1} ; $$
$$ C_{1} = - iQr_{2} v_{0}^{2} + 2iQ\Gamma r_{2} v_{0}^{4} + 2u_{0}^{4} v_{0}^{4} \eta_{2} - 2\Gamma u_{0}^{8} v_{0}^{4} \eta_{2} - 4\Gamma u_{0}^{4} v_{0}^{8} \eta_{2} + 4\Gamma^{2} u_{0}^{8} v_{0}^{8} \eta_{2} + 4v_{0}^{8} \xi_{2} - 8\Gamma v_{0}^{16} \xi_{2} ; $$
$$ C_{2} = - iQs_{1} u_{0} v_{0} + 2iQ\Gamma s_{1} u_{0} v_{0}^{3} + 2u_{0}^{5} v_{0}^{3} \eta_{1} - 2\Gamma u_{0}^{9} v_{0}^{3} \eta_{1} - 4\Gamma u_{0}^{5} v_{0}^{7} \eta_{1} + 4\Gamma^{2} u_{0}^{9} v_{0}^{7} \eta_{1} + 4u_{0} v_{0}^{7} \varsigma_{1} - 8\Gamma u_{0} v_{0}^{15} \varsigma_{1} ; $$
$$ C_{3} = iQs_{2} u_{0} v_{0} - 2iQ\Gamma s_{2} u_{0}^{3} v_{0} + 2u_{0}^{3} v_{0}^{5} \eta_{2} - 4\Gamma u_{0}^{7} v_{0}^{5} \eta_{2} - 2\Gamma u_{0}^{3} v_{0}^{9} \eta_{2} + 4\Gamma^{2} u_{0}^{7} v_{0}^{9} \eta_{2} + 4u_{0}^{7} v_{0} \varsigma_{2} - 8\Gamma u_{0}^{15} v_{0} \varsigma_{2} ; $$
$$ C_{4} = iQr_{1} u_{0}^{2} - 2iQ\Gamma r_{1} u_{0}^{4} + 2u_{0}^{4} v_{0}^{4} \eta_{1} - 4\Gamma u_{0}^{8} v_{0}^{4} \eta_{1} - 2\Gamma u_{0}^{4} v_{0}^{8} \eta_{1} + 4\Gamma^{2} u_{0}^{8} v_{0}^{8} \eta_{1} + 4u_{0}^{8} \xi_{1} - 8\Gamma u_{0}^{16} \xi_{1} ; $$
$$ D_{1} = - iQs_{2} u_{0} v_{0} + 2iQ\Gamma s_{2} u_{0}^{3} v_{0} + 2u_{0}^{3} v_{0}^{5} \eta_{2} - 4\Gamma u_{0}^{7} v_{0}^{5} \eta_{2} - 2\Gamma u_{0}^{3} v_{0}^{9} \eta_{2} + 4\Gamma^{2} u_{0}^{7} v_{0}^{9} \eta_{2} + 4u_{0}^{7} v_{0} \varsigma_{2} - 8\Gamma u_{0}^{15} v_{0} \varsigma_{2} ; $$
$$ D_{2} = iQs_{1} u_{0} v_{0} - 2iQ\Gamma s_{1} u_{0} v_{0}^{3} + 2u_{0}^{5} v_{0}^{3} \eta_{1} - 2\Gamma u_{0}^{9} v_{0}^{3} \eta_{1} - 4\Gamma u_{0}^{5} v_{0}^{7} \eta_{1} + 4\Gamma^{2} u_{0}^{9} v_{0}^{7} \eta_{1} + 4u_{0} v_{0}^{7} \varsigma_{1} - 8\Gamma u_{0} v_{0}^{15} \varsigma_{1} ; $$
$$ D_{3} = - iQs_{1} u_{0} v_{0} + 2iQ\Gamma s_{1} u_{0} v_{0}^{3} + 2u_{0}^{5} v_{0}^{3} \eta_{1} - 2\Gamma u_{0}^{9} v_{0}^{3} \eta_{1} - 4\Gamma u_{0}^{5} v_{0}^{7} \eta_{1} + 4\Gamma^{2} u_{0}^{9} v_{0}^{7} \eta_{1} + 4u_{0} v_{0}^{7} \varsigma_{1} - 8\Gamma u_{0} v_{0}^{15} \varsigma_{1} ; $$
$$ D_{4} = iQr_{2} v_{0}^{2} - 2iQ\Gamma r_{2} v_{0}^{4} + 2u_{0}^{4} v_{0}^{4} \eta_{2} - 2\Gamma u_{0}^{8} v_{0}^{4} \eta_{2} - 4\Gamma u_{0}^{4} v_{0}^{8} \eta_{2} + 4\Gamma^{2} u_{0}^{8} v_{0}^{8} \eta_{2} + 4v_{0}^{8} \xi_{2} - 8\Gamma v_{0}^{16} \xi_{2} ; $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanraj, P., Sivakumar, R., Kaliyamurthy, J. et al. Role of nonlinear saturation on modulational instability in Kundu–Eckhaus equation with the presence of inter modal, XPM and SPM. Opt Quant Electron 55, 327 (2023). https://doi.org/10.1007/s11082-023-04588-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04588-0

Keywords

Navigation