Skip to main content
Log in

SCAPS-based simulation analysis of device parameters of ZnO-inverted polymer solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This article reports the simulation of ZnO-based polymer solar cell (PSC) device parameters. The Solar Cell Capacitance Simulator (SCAPS-1D) software was used to analyze the cell parameters. Two different device configurations of PSCs were simulated with ZnO (an inverted device) and without ZnO (a reference device). The important device processing parameters such as working temperature (T), defect densities (Nt), series (Rs), and shunt (Rsh) resistances on cell performance were investigated. Comparing simulated and experimental results, a good correlation between PSCs was observed. The efficiencies of reference PSCs are 0.87% (simulated) and 0.85% (experimental) and for inverted PSCs are 2.33% (simulated) and 2.32% (experimental). In addition, the structure maintains an efficiency of 2.33–2.14% as the temperature goes up from 300 to 330 K. Comparing the efficiencies of reference and inverted devices, the role of the ZnO layer between the indium tin oxide (ITO) substrate and the device active layer (AL) was quite significant. The efficiencies of PSCs were well-matched, achieving a quite nice similarity between the simulated and experimental devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The SCAPS was used to Modeled and Simulate Polymer solar cells. Device performance parameters were analyzed using SCAPS and compare with the experimental results. The data related to the current study are available from the corresponding author on request.

References

  • Ali, M., et al.: Realization of solution processed multi-layer bulk heterojunction organic solar cells by electro-spray deposition. Org. Electron. 13, 2130–2137 (2012)

    Google Scholar 

  • Ali, F., et al.: Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cells. J. Appl. Phys. 122, 123105 (2017)

    ADS  Google Scholar 

  • Atourki, L., et al.: Numerical study of thin films CIGS bilayer solar cells using SCAPS. Mater. Today: Proc. 3, 2570–2577 (2016)

    Google Scholar 

  • Bangash, K.A., et al.: Thickness optimization of thin-film tandem organic solar cell. Micromachines 12, 518 (2021)

    Google Scholar 

  • Baranovskii, S., et al.: Charge-carrier transport in disordered organic solids. Phys. Rev. B 62, 7934 (2000)

    ADS  Google Scholar 

  • Bendenia, C., et al.: Numerical modelisation of ZnO interfacial layer on P3HT: PCBM based organic photovoltaic bulk heterojunction devices. Optik 174, 167–172 (2018)

    ADS  Google Scholar 

  • Bendib, et al.: Combined optical-electrical modeling of perovskite solar cell with an optimized design. Opt. Mater. 109, 110259 (2020)

    Google Scholar 

  • Bibi, K., et al.: Simulation and Experimental device performance analysis of TiO2 based inverted organic solar cells. J. Electr. Mater. 51, 5181–5187 (2022)

    ADS  Google Scholar 

  • Brabec, C.J., et al.: Plastic solar cells. Adv. Func. Mater. 11, 15–26 (2001)

    Google Scholar 

  • Brown, P.J., et al.: Effect of interchain interactions on the absorption and emission of poly (3-hexylthiophene). Phys. Rev. B 67, 064203 (2003)

    ADS  Google Scholar 

  • Burgelman, M., et al.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)

    ADS  Google Scholar 

  • Cameron, J., et al.: The damaging effects of the acidity in PEDOT: PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horiz. 7, 1759–1772 (2020)

    Google Scholar 

  • Carr, J.A., et al.: Deep defects and the attempt to escape frequency in organic photovoltaic materials. Appl. Phys. Lett. 107, 107–101 (2015)

    Google Scholar 

  • Chang, J., et al.: Different types of field-effect transistors-theory and applications. IntechOpen, London (2017)

    Google Scholar 

  • Chen, H.-Y., et al.: Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649–653 (2009)

    ADS  Google Scholar 

  • Chen, S., et al.: Inverted polymer solar cells with reduced interface recombination. Adv. Energy Mater. 2, 1333–1337 (2012)

    Google Scholar 

  • Chirvase, D., et al.: Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells. J. Appl. Phys. 93, 3376–3383 (2003)

    ADS  Google Scholar 

  • Dante, M., et al.: Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy. J. Phys. Chem. C 112, 7241–7249 (2008)

    Google Scholar 

  • DeBoisblanc, J.: Synthesis and characterization of P3HT: PCBM organic solar cells. Senior thesis, pp. 1–44 (2010)

  • Earle, M.: Pergamon (1951)

  • Fan, X., et al.: Rapid phase segregation of P3HT: PCBM composites by thermal annealing for high-performance bulk-heterojunction solar cells. Appl. Phys. A 105, 1003–1009 (2011)

    ADS  Google Scholar 

  • Geffroy, B., et al.: Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006)

    Google Scholar 

  • Ghani, F., et al.: The numerical calculation of single-diode solar-cell modelling parameters. Renew. Energy 72, 105–112 (2014)

    Google Scholar 

  • Glatthaar, M., et al.: Organic solar cells using inverted layer sequence. Thin Solid Films 491, 298–300 (2005)

    ADS  Google Scholar 

  • Gonzalez-Valls, I., et al.: Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2, 19–34 (2009)

    Google Scholar 

  • Guerrero, A., et al.: Oxygen doping-induced photogeneration loss in P3HT: PCBM solar cells. Sol. Energy Mater. Sol. Cells 100, 185–191 (2012)

    Google Scholar 

  • Hoppe, H., et al.: Organic solar cells: An overview. J. Mater. Res. 19, 1924–1945 (2004)

    ADS  Google Scholar 

  • Hu, X., et al.: Universal and versatile MoO3-based hole transport layers for efficient and stable polymer solar cells. J. Phys. Chem. C 118, 9930–9938 (2014)

    Google Scholar 

  • Huang, J.-S., et al.: Organic Photovoltaics X, p. 74161H. International Society for Optics and Photonics, Bellingham (2009)

    Google Scholar 

  • Irfan, et al.: Energy level evolution of molybdenum trioxide interlayer between indium tin oxide and organic semiconductor. Appl. Phys. Lett. 96, 31 (2010)

    Google Scholar 

  • Irwin, M.D., et al.: p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. 105, 2783–2787 (2008)

    ADS  Google Scholar 

  • Jørgensen, M., et al.: Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686–714 (2008)

    Google Scholar 

  • Kahoul, N., et al.: Assessing the early degradation of photovoltaic modules performance in the Saharan region. Energy Convers. Manage. 82, 320–326 (2014)

    Google Scholar 

  • Kim, H.K.: Work Function Tuning of Electrode Materials with small Molecule Surface Modifiers. Georgia Institute of Technology, Atlanta (2018)

    Google Scholar 

  • Kim, Y., et al.: Materials for Sustainable Energy A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 63–69. World Scientific, Singapore (2011)

    Google Scholar 

  • Kim, S., et al.: Highly efficient uniform ZnO nanostructures for an electron transport layer of inverted organic solar cells. Chem. Commun. 49, 6033–6035 (2013)

    Google Scholar 

  • Leong, W.L., et al.: Differential resistance analysis of charge carrier losses in organic bulk heterojunction solar cells: observing the transition from bimolecular to trap-assisted recombination and quantifying the order of recombination. Adv. Energy Mater. 1, 517–522 (2011)

    Google Scholar 

  • Li, S.S.: Semiconductor Physical Electronics. Springer, New York (2012)

    Google Scholar 

  • Li, G., et al.: Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 80–84. World Scientific, Singapore (2011)

    Google Scholar 

  • Li, Y., et al.: Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Sci. Rep. 7, 1–10 (2017)

    ADS  Google Scholar 

  • Li, W., et al.: Numerical analysis of the back interface for high efficiency wide bandgap chalcopyrite solar cells. Solar Energy 180, 207–215 (2019)

    ADS  Google Scholar 

  • Liang, Z., et al.: Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells. Adv. Func. Mater. 22, 2194–2201 (2012)

    Google Scholar 

  • Lin, Z., et al.: Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers. RSC Adv. 4, 6646–6651 (2014)

    ADS  Google Scholar 

  • Lin, Z., et al.: Low temperature aqueous solution-processed Li doped ZnO buffer layers for high performance inverted organic solar cells. J. Mater. Chem. C 4, 6169–6175 (2016)

    ADS  Google Scholar 

  • Lin, L., et al.: Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattices Microstruct. 104, 167–177 (2017)

    ADS  Google Scholar 

  • Liu, F., et al.: Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 104, 253508 (2014)

    ADS  Google Scholar 

  • Ma, W., et al.: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Func. Mater. 15, 1617–1622 (2005)

    Google Scholar 

  • Ma, Z., et al.: Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells. J. Phys. Chem. C 116, 24462–24468 (2012)

    Google Scholar 

  • Manceau, M., et al.: The mechanism of photo-and thermooxidation of poly (3-hexylthiophene) (P3HT) reconsidered. Polym. Degrad. Stab. 94, 898–907 (2009)

    Google Scholar 

  • Nandi, P., et al.: Morphological variations of ZnO nanostructures and its influence on the photovoltaic performance when used as photoanodes in dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 243, 111811 (2022)

    Google Scholar 

  • Nayak, P.K., et al.: Photovoltaic efficiency limits and material disorder. Energy Environ. Sci. 5, 6022–6039 (2012)

    Google Scholar 

  • Ongul, F.: Solution-processed inverted organic solar cell using V2O5 hole transport layer and vacuum free EGaIn anode. Opt. Mater. 50, 244–249 (2015)

    ADS  Google Scholar 

  • Proctor, C.M., et al.: Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells. Appl. Phys. Lett. 106, 23–21 (2015)

    Google Scholar 

  • Reyes-Reyes, M., et al.: High-efficiency photovoltaic devices based on annealed poly (3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6) C 61 blends. Appl. Phys. Lett. 87, 083506 (2005)

    ADS  Google Scholar 

  • Sahdan, M., et al.: Fabrication of inverted bulk heterojunction organic solar cells based on conjugated P3HT: PCBM using various thicknesses of ZnO buffer layer. Optik 126, 645–648 (2015)

    ADS  Google Scholar 

  • Samuel, E.P., et al.: Sol gel spin coated ZnO thin films for biosensing applications. Int. J. Eng. Technol. Res. 2, 42–44 (2014)

    Google Scholar 

  • Scharber, M.C., et al.: Design rules for donors in bulk-heterojunction solar cells—Towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)

    Google Scholar 

  • Sekitani, T., et al.: 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology. IEEE, pp. 1272–1275 (2010)

  • Servaites, J.D., et al.: Efficiency enhancement in organic photovoltaic cells: consequences of optimizing series resistance. Adv. Func. Mater. 20, 97–104 (2010)

    Google Scholar 

  • Shah, S.: Fabrication of bulk heterojunction organic solar cells with different configurations using electrospray. Nano Express 1, 020037 (2020)

    ADS  Google Scholar 

  • Shah, S.K., et al.: Optimal construction parameters of electrosprayed trilayer organic photovoltaic devices. J. Phys. D Appl. Phys. 47, 045106 (2013)

    ADS  Google Scholar 

  • Shah, S.K., et al.: Stability enhancement of polymer solar cells in trilayer configuration. Thin Solid Films 640, 104–108 (2017a)

    ADS  Google Scholar 

  • Shah, S.K., et al.: Optimization of active-layer thickness, top electrode and annealing temperature for polymeric solar cells. AIMS Mater. Sci. 4, 789–799 (2017b)

    Google Scholar 

  • Shah, S.K., et al.: Effect of TiO2 interlayer on the performance of inverted polymeric solar cells. Mater. Res. Express 6, 065102 (2019)

    ADS  Google Scholar 

  • Shah, S.K., et al.: Efficient method of fabricating polymeric solar cells in multilayered configuration using electrospray. J. Electron. Mater. 49, 1794–1800 (2020)

    ADS  Google Scholar 

  • Shah, S.K., et al.: Conventional and metal oxide-based inverted polymer solar cells: a comparative experimental study. J. Electr. Mater. 52, 1400–1409 (2022)

    ADS  Google Scholar 

  • Shi, J., et al.: Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Appl. Phys. Lett. 104, 063901 (2014)

    ADS  Google Scholar 

  • Singh, P., et al.: Temperature dependence of solar cell performance—an analysis. Sol. Energy Mater. Sol. Cells 101, 36–45 (2012)

    Google Scholar 

  • Solanki, C.S.: Solar Photovoltaics: Fundamentals, Technologies and Applications. Phi Learning pvt. Ltd., New Delhi (2015)

    Google Scholar 

  • Street, R., et al.: Interface state recombination in organic solar cells. Phys. Rev. B 81, 205307 (2010)

    ADS  Google Scholar 

  • Tai, H., et al.: The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability. Sensors 15, 2086–2103 (2015)

    ADS  Google Scholar 

  • Tanveer, M., et al.: Interface modification of inverted bulk heterojunction organic solar cell by ZnO and CuOx layers. NUST J. Eng. Sci. 6, 15–20 (2013)

    Google Scholar 

  • Ullah, I., et al.: Enhanced efficiency of organic solar cells by using ZnO as an electron-transport layer. Mater. Res. Express 4, 125505 (2017)

    ADS  Google Scholar 

  • Van Dyk, E., et al.: Analysis of the effect of parasitic resistances on the performance of photovoltaic modules. Renew. Energy 29, 333–344 (2004)

    Google Scholar 

  • Volonakis, G., et al.: Impurity-related degradation in a prototype organic photovoltaic material: a first-principles study. Org. Electron. 14, 1242–1248 (2013)

    Google Scholar 

  • von Hauff, E., et al.: Study of field effect mobility in PCBM films and P3HT:PCBM blends. Sol. Energy Mater. Sol. Cells 87, 149–156 (2005)

    Google Scholar 

  • Xue, J., et al.: 4.2% efficient organic photovoltaic cells with low series resistances. Appl. Phys. Lett. 84, 3013–3015 (2004)

    ADS  Google Scholar 

  • Yang, D., et al.: Chemically modified graphene oxides as a hole transport layer in organic solar cells. Chem. Commun. 48, 8078–8080 (2012)

    Google Scholar 

  • Ye, L., et al.: High-efficiency nonfullerene organic solar cells: critical factors that affect complex multi-length scale morphology and device performance. Adv. Energy Mater. 7, 1602000 (2017)

    Google Scholar 

  • Ye, L., et al.: Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 17, 253–260 (2018)

    ADS  Google Scholar 

  • Yu, G., et al.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)

    ADS  Google Scholar 

  • Zafar, M., et al.: Highly stable inverted organic photovoltaic cells with a V2O5 hole transport layer. Korean J. Chem. Eng. 34, 1504–1508 (2017)

    Google Scholar 

  • Zhang, Y., et al.: Effect of charge recombination on the fill factor of small molecule bulk heterojunction solar cells. Adv. Energy Mater. 1, 610–617 (2011)

    Google Scholar 

  • Zheng, Z., et al.: Tandem organic solar cell with 20.2% efficiency. Joule 6, 171–184 (2022)

    ADS  Google Scholar 

  • Zhu, L., et al.: Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022)

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The Author acknowledges the Higher Education Commission (HEC), Islamabad, provided financial support through the National Research Program for Universities (NRPU-10603, 2017), Pakistan. Dr. Marc Burgelman of the University of Gent in Belgium provided the SCAPS simulation program.

Funding

The authors declare that no funds and grant were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work in modeling, simulation and device preparation. IA, MA and MI performed material preparation, data collection and analysis. The first draft of the manuscript was written by IA and KH and SKS, commented on the first version and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Said Karim Shah.

Ethics declarations

Conflict of interest

I certify on behalf of all co-authors that none of us has any known financial conflicts of interest or personal relationships that would have appeared to have an influence on the work reported in this research.

Ethical standards

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Hayat, K., Ashraf, M. et al. SCAPS-based simulation analysis of device parameters of ZnO-inverted polymer solar cells. Opt Quant Electron 55, 345 (2023). https://doi.org/10.1007/s11082-023-04579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04579-1

Keywords

Navigation