Skip to main content
Log in

Numerical simulation of electron-transport-layer-free CH3NH3Pb(I1−xBrx)3 perovskite solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Numerical simulation can provide an effective theoretical basis for studying carrier transport, collection and diffusion in perovskite solar cells. We used SCAPS-1D software to perform numerical simulations based on CH3NH3Pb(I1−xBrx)3 solar cells. First, we analyzed the thickness of the absorbing layer, doping concentration and defect density, and found that the thickness of 0.5 μm and the defect density of 3 × 1011 cm−3 have great photoelectric conversion performance. We then adjusted the thickness and doping concentration of the hole transport layer to further optimize the P3HT hole transport and diffusion performance. In addition, we found that the interface defect layer has little effect on device performance, but the FTO layer plays an important role in the electron-free layer structure of transmitting electrons. Finally, we compared the electron-transport-layer-free structure with the traditional electron transport layer structure containing PC61BM, SnO2, TiO2 and C60, and predicted the excellent photoelectric conversion performance of the electron-transport-layer-free solar cell structure by 26.15%. Our work simplifies the preparation process of traditional solar cells, providing new insights not only for the development of high-efficiency solar cells, but also for the development of solar cells without electron transport layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed, A., Riaz, K., Mehmood, H., Tauqeer, T., Ahmad, Z.: Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering. Opt. Mater. 105, 5 (2020)

    Article  Google Scholar 

  • Ahmed, S., Jannat, F., Khan, M.A.K., Alim, M.A.: Numerical development of eco-friendly Cs2TiBr 6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik 225, 5 (2021)

    Article  ADS  Google Scholar 

  • AitDads, H., Bouzit, S., Nkhaili, L., Elkissani, A., Outzourhit, A.: Structural, optical and electrical properties of planar mixed perovskite halides/Al-doped Zinc oxide solar cells. Sol. Energy Mater. Sol. Cells 148, 30–33 (2016)

    Article  Google Scholar 

  • Bendenia, C., Merad-Dib, H., Bendenia, S., Bessaha, G., Hadri, B.: Theoretical study of the impact of the D/A system polymer and anodic interfacial layer on inverted organic solar cells (BHJ) performance. Opt. Mater. 121, 111588 (2021)

    Article  Google Scholar 

  • Chen, B., Rudd, P.N., Yang, S., Yuan, Y., Huang, J.: Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019)

    Article  Google Scholar 

  • Cherif, F.E., Hamza, M., Sammouda, H.: High irradiance performance of cesium-formamidinium-based mixed-halide perovskite for concentrator photovoltaics under various operating conditions. J. Phys. Chem. Solids 135, 10 (2019)

    Article  Google Scholar 

  • Draguta, S., Sharia, O., Yoon, S.J., Brennan, M.C., Morozov, Y.V., Manser, J.S., Kamat, P.V., Schneider, W.F., Kuno, M.: Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites. Nat. Commun. 8, 200 (2017)

    Article  ADS  Google Scholar 

  • Hao, L., Zhou, M., Song, Y., Ma, X., Wu, J., Zhu, Q., Fu, Z., Liu, Y., Hou, G., Li, T.: Tin-based perovskite solar cells: Further improve the performance of the electron transport layer-free structure by device simulation. Sol. Energy 230, 345–354 (2021a)

    Article  ADS  Google Scholar 

  • Hao, L., Li, T., Ma, X., Wu, J., Qiao, L., Wu, X., Hou, G., Pei, H., Wang, X., Zhang, X.: A tin-based perovskite solar cell with an inverted hole-free transport layer to achieve high energy conversion efficiency by SCAPS device simulation. Opt. Quantum Electron. 53, 5 (2021b)

    Article  Google Scholar 

  • Hao, L., Wu, X., Wang, H., Song, Y., Ma, X., Zeng, Z., Wu, J., Tao, Y., Wang, Z., Liu, Y.: Improving the performance of organic lead–tin laminated perovskite solar cells from the perspective of device simulation. Opt. Quantum Electron. 54, 4 (2022)

    Article  Google Scholar 

  • Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H.-J., Sarkar, A., Nazeeruddin, M.K., Grätzel, M., Seok, S.I.: Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486–491 (2013)

    Article  ADS  Google Scholar 

  • Huang, L., Sun, X., Li, C., Xu, R., Xu, J., Du, Y., Wu, Y., Ni, J., Cai, H., Li, J., Hu, Z., Zhang, J.: Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation. Sol. Energy Mater. Sol. Cells 157, 1038–1047 (2016)

    Article  Google Scholar 

  • Imanishi, M., Kajiya, D., Koganezawa, T., Saitow, K.I.: Uniaxial orientation of P3HT film prepared by soft friction transfer method. Sci Rep 7, 5141 (2017)

    Article  Google Scholar 

  • Jayan, K.D., Sebastian, V.: Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy 217, 40–48 (2021)

    Article  ADS  Google Scholar 

  • Jeong, J., Kim, M., Seo, J., Lu, H., Ahlawat, P., Mishra, A., Yang, Y., Hope, M.A., Eickemeyer, F.T., Kim, M., Yoon, Y.J., Choi, I.W., Darwich, B.P., Choi, S.J., Jo, Y., Lee, J.H., Walker, B., Zakeeruddin, S.M., Emsley, L., Rothlisberger, U., Hagfeldt, A., Kim, D.S., Gratzel, M., Kim, J.Y.: Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021)

    Article  ADS  Google Scholar 

  • Jiang, M., Yuan, J., Cao, G., Tian, J.: In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell. Chem. Eng. J. 402, 126152 (2020)

    Article  Google Scholar 

  • Karimi, E., Ghorashi, S.M.B.: Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells. Optik 130, 650–658 (2017)

    Article  ADS  Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc 131, 6050–6051 (2009)

    Article  Google Scholar 

  • Kung, P.K., Li, M.H., Lin, P.Y., Chiang, Y.H., Chan, C.R., Guo, T.F., Chen, P.: A review of inorganic hole transport materials for perovskite solar cells. Adv. Mater. Interfaces 5, 1800882 (2018)

    Article  Google Scholar 

  • Lin, L., Jiang, L., Li, P., Fan, B., Qiu, Y., Yan, F.: Simulation of optimum band structure of HTM-free perovskite solar cells based on ZnO electron transporting layer. Mater. Sci. Semicond. Process. 90, 1–6 (2019)

    Article  Google Scholar 

  • Lisensky, G.C., Dauzvardis, F., Young, M.M.K.: Periodic properties illustrated by CH3NH3Pb(I1–xBrx)3 solid solution perovskite semiconductors. J. Chem. Educ. 98, 2392–2397 (2021)

    Article  Google Scholar 

  • Mali, S.S., Hong, C.K., Inamdar, A.I., Im, H., Shim, S.E.: Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers. Nanoscale 9, 3095–3104 (2017)

    Article  Google Scholar 

  • Marchenko, E.I., Fateev, S.A., Petrov, A.A., Goodilin, E.A., Eremin, N.N., Tarasov, A.B.: Transferable approach of semi-empirical modeling of disordered mixed-halide hybrid perovskites CH3NH3Pb(I1–xBrx)3: prediction of thermodynamic properties, phase stability, and deviations from Vegard’s Law. J. Phys. Chem. C 123, 26036–26040 (2019)

    Article  Google Scholar 

  • Martynow, M., Glowienka, D., Galagan, Y., Guthmuller, J.: Effects of bromine doping on the structural properties and band gap of CH3NH3Pb(I1–x Br x )3 perovskite. ACS Omega 5, 26946–26953 (2020)

    Article  Google Scholar 

  • Pal, D., Das, S.: Numerical modeling and simulation for augmenting the photovoltaic response of HTL free perovskite solar cells. Mater. Today Proc. 46, 6367–6373 (2021)

    Article  Google Scholar 

  • Peng, G., Xu, X., Xu, G.: Hybrid organic-inorganic perovskites open a new era for low-cost, high efficiency solar cells. J. Nanomater. 2015, 1–10 (2015)

    Google Scholar 

  • Pont, S., Bryant, D., Lin, C.-T., Aristidou, N., Wheeler, S., Ma, X., Godin, R., Haque, S.A., Durrant, J.R.: Tuning CH3NH3Pb(I1−xBrx)3 perovskite oxygen stability in thin films and solar cells. J. Mater. Chem. A 5, 9553–9560 (2017)

    Article  Google Scholar 

  • Ramli, N.F., Sepeai, S., Rostan, N.F.M., Ludin, N.A., Ibrahim, M.A., Teridi, M.A.M., Zaidi, S.H.: Model development of monolithic tandem silicon-perovskite solar cell by SCAPS simulation (2017)

  • Raoui, Y., Ez-Zahraouy, H., Tahiri, N., El Bounagui, O., Ahmad, S., Kazim, S.: Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Sol. Energy 193, 948–955 (2019)

  • Raza, E., Ahmad, Z., Aziz, F., Asif, M., Ahmed, A., Riaz, K., Bhadra, J., Al-Thani, N.J.: Numerical simulation analysis towards the effect of charge transport layers electrical properties on cesium based ternary cation perovskite solar cells performance. Sol. Energy 225, 842–850 (2021)

    Article  ADS  Google Scholar 

  • Ren, X., Wang, Z.S., Choy, W.C.H.: Device physics of the carrier transporting layer in planar perovskite solar cells. Adv. Opt. Mater. 7, 1900407 (2019)

    Article  Google Scholar 

  • Sadhanala, A., Deschler, F., Thomas, T.H., Dutton, S.E., Goedel, K.C., Hanusch, F.C., Lai, M.L., Steiner, U., Bein, T., Docampo, P., Cahen, D., Friend, R.H.: Preparation of single-phase films of CH3NH3Pb(I1-xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014)

    Article  Google Scholar 

  • Sahu, A., Dixit, A.: Inverted structure perovskite solar cells: a theoretical study. Curr. Appl. Phys. 18, 1583–1591 (2018)

    Article  ADS  Google Scholar 

  • Salah, M.M., Hassan, K.M., Abouelatta, M., Shaker, A.: A comparative study of different ETMs in perovskite solar cell with inorganic copper iodide as HTM. Optik 178, 958–963 (2019)

    Article  ADS  Google Scholar 

  • Saxenaa, K., Gayathri, J., Guptab, N., Mehtac, D.S.: Progress in organic-inorganic hybrid perovskite solar cells: architecture, efficiency and stability. Indian J. Pure Appl. Phys. 60, 367–376 (2022)

  • Sharma, D., Mehra, R., Raj, B.: Mathematical modelling and simulation of CH3NH3Pb(I1-Xbrx)3 based perovskite solar cells for high efficiecy. Journal of Computational Electronics, 1-11 (2022)

  • Son, D.-Y., Lee, J.-W., Choi, Y.J., Jang, I.-H., Lee, S., Yoo, P.J., Shin, H., Ahn, N., Choi, M., Kim, D., Park, N.-G.: Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 15 (2016)

    Article  Google Scholar 

  • Sutter-Fella, C.M., Miller, D.W., Ngo, Q.P., Roe, E.T., Toma, F.M., Sharp, I.D., Lonergan, M.C., Javey, A.: Band tailing and deep defect states in CH3NH3Pb(I1–xBrx)3 perovskites as revealed by sub-bandgap photocurrent. ACS Energy Lett. 2, 709–715 (2017)

    Article  Google Scholar 

  • Wu, S., Zhang, J., Li, Z., Liu, D., Qin, M., Cheung, S.H., Lu, X., Lei, D., So, S.K., Zhu, Z., Jen, A.K.Y.: Modulation of defects and interfaces through Alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 4, 1248–1262 (2020)

    Article  Google Scholar 

  • Yin, W.J., Yan, Y., Wei, S.H.: anomalous alloy properties in mixed halide perovskites. J. Phys. Chem. Lett. 5, 3625–3631 (2014)

    Article  Google Scholar 

  • Yu, Y., Zhang, F., Liu, C., Sun, Q., Li, Z., Cui, Y., Qin, W., Zhu, F., Hao, Y.: Formation of large grain and compact CH3NH3Pb(I1–xBrx)3 film by multisteps solvent postannealing for high-efficiency perovskite solar cells. IEEE J. Photovolt. 8, 1017–1022 (2018)

    Article  Google Scholar 

  • Zhao, Y., Miao, P., Elia, J., Hu, H., Wang, X., Heumueller, T., Hou, Y., Matt, G.J., Osvet, A., Chen, Y.T., Tarrago, M., de Ligny, D., Przybilla, T., Denninger, P., Will, J., Zhang, J., Tang, X., Li, N., He, C., Pan, A., Meixner, A.J., Spiecker, E., Zhang, D., Brabec, C.J.: Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nat. Commun. 11, 6328 (2020)

    Article  ADS  Google Scholar 

  • Zhu, W., Bao, C., Li, F., Yu, T., Gao, H., Yi, Y., Yang, J., Fu, G., Zhou, X., Zou, Z.: A halide exchange engineering for CH3NH3PbI3−Br perovskite solar cells with high performance and stability. Nano Energy 19, 17–26 (2016)

    Article  Google Scholar 

  • Zong, B., Fu, W., Liu, H., Huang, L., Bala, H., Wang, X., Sun, G., Cao, J., Zhang, Z.: Highly stable hole-conductor-free CH3NH3Pb(I1-Br )3 perovskite solar cells with carbon counter electrode. J. Alloys Compd. 748, 1006–1012 (2018)

    Article  Google Scholar 

Download references

Funding

This work was partially sponsored by Nation Natural Science Foundation of China (52076126), and Shanghai Science and Technology Committee (22010501500), Key Laboratory of Clean Power Generation and Environmental Protection Technology in Mechanical Industry.

Author information

Authors and Affiliations

Authors

Contributions

WC: Writing—original draft, Formal analysis, Software, Data curation, Conceptualization, Writing—review & editing. XZ: Supervision, Data curation. WL: Validation, Supervision, Software. CP: Investigation. YL: Resources. FL: Investigation. JL: Supervision. MW and JW: Writing—review & editing, Project administration. ZZ: Resources.

Corresponding authors

Correspondence to Maoliang Wu or Jiang Wu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, W., Zhang, X., Li, W. et al. Numerical simulation of electron-transport-layer-free CH3NH3Pb(I1−xBrx)3 perovskite solar cells. Opt Quant Electron 55, 351 (2023). https://doi.org/10.1007/s11082-023-04554-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04554-w

Keywords

Navigation