Skip to main content
Log in

Ferromagnetic recursion for geometric phase timelike \({\mathcal {S}}_{{\textbf{N}}}\)-magnetic fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, we introduce optical recursional ferromagnetic model for timelike \({\mathcal {S}}_{{\textbf{N}}}\)-magnetic fiber in deSitter space. Also, the concept of the recursion operator for timelike \({\mathcal {S}}_{{\textbf{N}}}\)-magnetic fiber is investigated by using normalized operator. Thus, we obtain recursion total phase for Lorentz forces by using recursion ferromagnetic anholonomy density in deSitter space. Phononic recursion ferromagnetic anholonomy density and sonic magnetic crystals are simulated by distinct geometrical applications in deSitter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge Univ. Press, Cambridge (1990)

    MATH  Google Scholar 

  • Arefin, M.A., Khatun, M.A., Uddin, M.H., Inc, M.: Investigation of adequate closed form travelling wave solution to the space-time fractional non-linear evolution equations. J. Ocean Eng. Sci. 7, 292–303 (2022)

    Article  Google Scholar 

  • Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    Article  ADS  Google Scholar 

  • Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    Article  ADS  Google Scholar 

  • Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47(6), 3108 (1993)

    Article  ADS  Google Scholar 

  • Barros, M., Ferrández, A., Lucas, P., Merono, M.: Hopf cylinders, B-scrolls and solitons of the Betchov-Da Rios equation in the 3-dimensional anti-De Sitter space. C. R. Acad. Sci. Paris Série I(321), 505–509 (1995)

    MathSciNet  MATH  Google Scholar 

  • Barros, M., Ferrández, A., Lucas, P., Meroño, M.A.: Solutions of the Betchov-Da Rios soliton equation: a Lorentzian approach. J. Geom. Phys. 31(2–3), 217–228 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Beffa, G.M., Olver, P.J.: Poisson structure for geometric curve flows in semi-simple homogeneous spaces. Regul. Chaotic Dyn. 15, 532–550 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Beffa, G.M., Sanders, J.A., Wang, J.P.: Integrable systems in three-dimensional Riemannian geometry. J. Nonlinear Sci. 12, 143–167 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Burns, M.M., Fournier, J.-M., Golovchenko, J.A.: Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989)

    Article  ADS  Google Scholar 

  • Calini, A., Ivey, T.: Finite-gap solutions of the vortex filament equation genus one solutions and symmetric solutions. J. Nonlinear Sci. 15, 321–361 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chaumet, P.C., Nieto-Vesperinas, M.: Optical binding of particles with or without the presence of a flat dielectric surface. Phys. Rev. B 64, 035422 (2001)

    Article  ADS  Google Scholar 

  • Chen, G., Wang, Q.: Local fields in single-mode helical fibres. Opt. Quantum Electron. 27, 1069 (1995)

    Article  Google Scholar 

  • Chou, K.S., Qu, C.Z.: The KdV equation and motion of plane curves. J. Phys. Soc. Jpn. 70, 1912–1916 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dai, H., Wang, Y., Wang, L.: Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int. J. Eng. Sci. 94, 103–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Danesh, M., Farajpour, A., Mohammadi, M.: Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech. Res. Commun. 39, 23–27 (2012)

    Article  MATH  Google Scholar 

  • Daneshmehr, A., Rajabpoor, A.: Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions. Int. J. Eng. Sci. 82, 84–100 (2014)

    Article  Google Scholar 

  • Dholakia, K., Zemánek, P.: Colloquium: gripped by light: optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010)

    Article  ADS  Google Scholar 

  • Fang, X.S., Lin, Z.Q.: Field in single-mode helically-wound optical fibers. IEEE Trans. Microwave Theory Tech. MTT 33, 1150 (1985)

    Article  ADS  Google Scholar 

  • Farajpour, A., Rastgoo, A., Mohammadi, M.: Surface effects on the mechanical characteristics of microtubule networks in living cells. Mech. Res. Commun. 57, 18–26 (2014)

    Article  Google Scholar 

  • Farokhi, H., Ghayesh, M.H.: Dynamical behaviour of electrically actuated microcantilevers. Coupled systems mechanics 4, 251–262 (2015)

    Article  Google Scholar 

  • Ghayesh, M.H., Farokhi, H.: Nonlinear mechanics of doubly curved shallow microshells. Int. J. Eng. Sci. 119, 288–304 (2017a)

  • Ghayesh, M.H., Farokhi, H.: Parametric vibrations of imperfect Timoshenko microbeams. Microsyst. Technol. 23, 917–929 (2017b)

  • Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos. B Eng. 50, 318–324 (2013)

    Article  MATH  Google Scholar 

  • Gulalai, U.A., Ahmad, S., Inc, M.: Fractal fractional analysis of modified KdV equation under three different kernels. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.04.025

    Article  Google Scholar 

  • Guo, B., Ding, S.: Landau-Lifshitz Equations. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  • Körpınar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik 219, 165134 (2020)

    Article  ADS  Google Scholar 

  • Körpınar, Z., Körpınar, T.: Optical hybrid electric and magnetic \(\text{B}_{{1}}\)-phase with Landau Lifshitz approach. Optik 247, 167917 (2021a)

  • Körpınar, Z., Körpınar, T.: Optical tangent hybrid electromotives for tangent hybrid magnetic particle. Optik 247, 167823 (2021b)

  • Körpınar, T., Körpınar, Z.: Optical spherical Ss-electric and magnetic phase with fractional q-HATM approach. Optik 243, 167274 (2021c)

  • Körpınar, T., Körpınar, Z.: New version of optical spherical electric and magnetic flow phase with some fractional solutions in \({\mathbb{S} } _{{\mathbb{H} }^{3}}^{2}\). Optik 243, 167378 (2021d)

  • Körpınar, T., Körpınar, Z.: A new approach for fractional spherical magnetic flux flows with some fractional solutions. Optik 240, 166906 (2021e)

  • Körpınar, T., Körpınar, Z.: Time like spherical magnetic \({\mathbb{S} }_{{\textbf{N} }}\) flux flows with Heisenberg spherical ferromagnetic spin with some solutions. Optik 242, 166745 (2021f)

  • Körpınar, T., Körpınar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021g)

  • Körpınar, T., Körpınar, Z.: Optical electromagnetic flux fibers with optical antiferromagnetic model. Optik 251, 168301 (2022a)

  • Körpınar, Z., Korpinar, T.: Optical spherical electroosmotic phase and optical energy for spherical \(\alpha\)-magnetic fibers. Optik 255, 168455 (2022b)

  • Körpınar, Z., Korpinar, T.: Optical antiferromagnetic electric \({\mathbb{S} }\alpha\)-flux with electroosmotic velocity in Heisenberg \({\mathbb{S} }_{{\mathbb{H} }}^{2}\). Optik 252, 168206 (2022c)

  • Körpınar, T., Körpınar, Z., Demirkol, R.C.: Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach. Optik 235, 166444 (2020)

    Article  ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \({\mathbb{S} }_{Heis^{3}}^{2}\). Optik 247, 167937 (2021a)

  • Körpınar, T., Sazak, A., Körpınar, Z.: Optical effects of some motion equations on quasi-frame with compatible Hasimoto map. Optik 247, 167914 (2021b)

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Optical magnetic helicity with binormal electromagnetic vortex filament flows in MHD. Optik 247, 167823 (2021c)

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021d)

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Phys. Scr. 96(8), 085219 (2021e)

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space. Optik 226, 165872 (2021f)

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space. Optik 238, 166403 (2021g)

  • Korpinar, Z., et al.: New quasi uniformly accelerated motion with hidden quasi momentum. J. Ocean Eng. Sci. (2022a). https://doi.org/10.1016/j.joes.2022.03.024

  • Körpınar, T., Körpınar, Z., Asil, V.: New approach for optical electroostimistic phase with optical quasi potential energy. Optik 251, 168291 (2022b)

  • Körpınar, T., Körpınar, Z., Asil, V.: Electric flux fibers with spherical antiferromagnetic approach with electroosmotic velocity. Optik 252, 168108 (2022c)

  • Lakshmanan, M., Rajasekar, S.: Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer, New York (2003)

    Book  MATH  Google Scholar 

  • Marí Beffa, G.: Hamiltonian evolution of curves in classical affine geometries. Phys. D 238, 100–115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Matveev, B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  • Raza, N., Batool, A., Inc, M.: New hyperbolic and rational form solutions of -dimensional generalized Korteweg-de Vries model. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.04.021

  • Ricca, R.L.: Physical interpretation of certain invariants for vortex filament motion under LIA. Phys. Fluids A 4(5), 938–944 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Vieira, V.R., Horley, P.P.: The Frenet–Serret representation of the Landau–Lifshitz–Gilbert equation. J. Phys. A Math. Theor. 45(6), 065208 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wang, M., Zhou, Y., Li, Z.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67 (1996)

    Article  ADS  MATH  Google Scholar 

  • Xia, F.L., Hashemi, M.S., Inc, M., Ashraf, P.: Explicit solutions of higher dimensional Burger’s equations. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.04.032

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korpinar, Z., Inc, M. & Korpinar, T. Ferromagnetic recursion for geometric phase timelike \({\mathcal {S}}_{{\textbf{N}}}\)-magnetic fibers. Opt Quant Electron 55, 382 (2023). https://doi.org/10.1007/s11082-022-04539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04539-1

Keywords

Navigation