Skip to main content
Log in

Design and implementation of low-cost gas sensor based on functionalized graphene quantum dot/Polyvinyl alcohol polymeric nanocomposites

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Polyvinyl Alcohol’s (PVA) Electronic Properties are improved by adding metal oxides and functional groups, allowing them to be used in various applications based on their electrical properties. As a result, the functionalization of PVA is modeled using density functional theory at M062x/6–311 + G(2d, p). As an adsorption state, five molecules with various functional groups bind with the PVA surface: hydroxyl group (OH), carboxyl group (COOH), cyanide (CN), amino group (NH2), and graphene quantum dots (GQDs). As a result, there is a shift in the overall dipole moment and the HOMO/LUMO bandgap energy. Also investigated is the molecular electrostatic potential (MESP). Because of the functionalization, the possibility of PVA creating hydrogen bonds with its surroundings is increased. Also, the molecular electrostatic potential (MESP) is investigated. Because of the functionalization, the possibility of PVA making hydrogen bonds with its surroundings is increased, as seen by the MESP maps. The PVA surface’s physical properties fluctuate, making it suitable for various applications. Finally, the researched structure was dedicated as a gas sensor using the proposed model of PVA functionalized with GQDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badry, R., Radwan, S.H., Ezzat, D., Ezzat, H., Elhaes, H., Ibrahim, M.: Study of the Electronic Properties of Graphene Oxide/(PANi/Teflon). Biointerface Res. Appl. Chem. 10, 6926–6935 (2020). https://doi.org/10.33263/BRIAC106.69266935

    Article  Google Scholar 

  • Badry, R., Ibrahim, A., Gamal, F., Ibrahim, S.A., Ezzat, H., Elhaes, H., Ibrahim, M.: Modeling the effect of Zinc Oxide on the electronic properties of polyvinyl alcohol. Egypt. J. Chem. 63(12), 4789–4796 (2020). https://doi.org/10.21608/EJCHEM.2020.27245.2564

    Article  Google Scholar 

  • Badry, R., Ibrahim, A., Gamal, F., Shehata, D., Ezzat, H., Elhaes, H., Ibrahim, M.: electronic properties of polyvinyl alcohol/TiO2/SiO2 nanocomposites. Biointerface Res. Appl. Chem. 10, 6427–6435 (2020). https://doi.org/10.33263/BRIAC105.64276435

    Article  Google Scholar 

  • Badry, R., Fahmy, A., Ibrahim, A., Elhaes, H., Ibrahim, M.: Application of polyvinyl alcohol/polypropylene/zinc oxide nanocomposites as sensor: modeling approach. Opt. Quantum. Electron. 53(1), 1–12 (2021). https://doi.org/10.1007/s11082-020-02646-5

    Article  Google Scholar 

  • Catania, F., Marras, E., Giorcelli, M., Jagdale, P., Lavagna, L., Tagliaferro, A., Bartoli, M.: A review on recent advancements of graphene and graphene-related materials in biological applications. J. Appl. Sci. 11(2), 614 (2021). https://doi.org/10.3390/app11020614

    Article  Google Scholar 

  • Dong, C., Zheng, W., Wang, L., Zhen, W., Zhao, L.: Insight into glass transition temperature and mechanical properties of PVA/TRIS functionalized graphene oxide composites by molecular dynamics simulation. Mater. Des. 206, 109770 (2021). https://doi.org/10.1016/j.matdes.2021.109770

    Article  Google Scholar 

  • Fahmy, A., Khafagy, R.M., Elhaes, H., Ibrahim, M.A.: ICMMS-2: molecular modeling analyses of polyvinyl Alcohol/Sodium Alginate/ZnO Composite. Egypt. J. Chem. 64(3), 7–8 (2021). https://doi.org/10.21608/EJCHEM.2021.55865.3184

    Article  Google Scholar 

  • Faiz, M.A., Yahya, N.A.M., Yusoff, N.N.A.N., Hashim, N., Shakirah, L., Abdullah, N.: Thermal characterization of polyvinyl alcohol nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 1068(1), 012026 (2021). https://doi.org/10.1088/1757-899X/1068/1/012026

    Article  Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseri, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci Petersson, B.G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, P.H., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr. Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. Gaussian, Inc., Gaussian 09, Revision C.01.Wallingford CT, (2010).

  • Htwe, Y.Z.N., Mariatti, M., Chin, S.Y.: Fabrication of graphene by electrochemical intercalation method and performance of graphene/PVA composites as stretchable strain sensor. Arabian J. Eng. Sci. 45(9), 7677–7689 (2020). https://doi.org/10.1007/s13369-020-04807-w

    Article  Google Scholar 

  • Hu, Q., Nag, A., Xu, Y., Han, T., Zhang, L.: Use of graphene-based fabric sensors for monitoring human activities. Sens. Actuators A 332, 113172 (2021). https://doi.org/10.1016/j.sna.2021.113172

    Article  Google Scholar 

  • Hurayra-Lizu, K.A., Bari, M.W., Gulshan, F., Islam, M.R.: GO based PVA nanocomposites: tailoring of optical and structural properties of PVA with low percentage of GO nanofillers. Heliyon 7(5), e06983 (2021). https://doi.org/10.1016/j.heliyon.2021.e06983

    Article  Google Scholar 

  • Ismail, A.M., Ezzat, H.A., Menazea, A.A., Ibrahim, M.A.: Synthesis, molecular spectroscopic analyses, and computational investigation using DFT: B3LYP/LANL2DZ calculations for PVC/PANI/GO composite. J. Electron. Mater. 50(8), 4741–4751 (2021). https://doi.org/10.1007/s11664-021-09009-0

    Article  ADS  Google Scholar 

  • Jannatyha, N., Shojaee-Aliabadi, S., Moslehishad, M., Moradi, E.: Comparing mechanical, barrier and antimicrobial properties of nanocellulose/CMC and nanochitosan/CMC composite films. Int. J. Biol. Macromol. 164, 2323–2328 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.249

    Article  Google Scholar 

  • Karthik, V., Selvakumar, P., Senthil Kumar, P., Vo, D.V.N., Gokulakrishnan, M., Keerthana, P., Rajeswari, R.: Graphene-based materials for environmental applications: a review. Environ. Chem. Lett. 19(5), 3631–3644 (2021). https://doi.org/10.1007/s10311-021-01262-3

    Article  Google Scholar 

  • Kim, J., Eum, J.H., Kang, J., Kwon, O., Kim, H., Kim, D.W.: Tuning the hierarchical pore structure of graphene oxide through dual thermal activation for high-performance supercapacitor. Sci. Rep. 11(1), 1–10 (2021). https://doi.org/10.1038/s41598-021-81759-7

    Article  ADS  Google Scholar 

  • Le, T.D., Tran, L.T., Dang, H.T.M., Tran, T.T.H., Tran, H.V.: Graphene oxide/polyvinyl alcohol/Fe3O4 nanocomposite: an efficient adsorbent for Co(II) ion removal. J. Anal. Methods Chem. 2021, 1–10 (2021). https://doi.org/10.1155/2021/6670913

    Article  Google Scholar 

  • Lee, S.P., Ali, G.A., Hegazy, H.H., Lim, H.N., Chong, K.F.: Optimizing reduced graphene oxide aerogel for a supercapacitor. Energy Fuels 35(5), 4559–4569 (2021). https://doi.org/10.1021/acs.energyfuels.0c04126

    Article  Google Scholar 

  • Lin, Y., Chen, R., Zhang, Y., Lin, Z., Liu, Q., Liu, J., Wang, J.: Sandwich-like polyvinyl alcohol (PVA) grafted graphene: A solid-inhibitors container for long term self-healing coatings. Chem. Eng. J. 383, 123203 (2020). https://doi.org/10.1016/j.cej.2019.123203

    Article  Google Scholar 

  • Lyn, F.H., Peng, T.C., Ruzniza, M.Z., Hanani, Z.N.: Effect of oxidation degrees of graphene oxide (GO) on the structure and physical properties of chitosan/GO composite films. Food Packag. Shelf Life 21, 100373 (2019). https://doi.org/10.1016/j.fpsl.2019.100373

    Article  Google Scholar 

  • Mallakpour, S.: Rashidimoghadam, S. Poly (vinyl alcohol)/carbon nanotube nanocomposites. Biodegrad. Biocompat. Polym. Compos. 297–315 (2018). https://doi.org/10.1016/B978-0-08-100970-3.00010-9

  • Ntshangase, N.C., Sadare, O.O., Daramola, M.O.: Effect of silica sodalite functionalization and PVA coating on performance of sodalite infused psf membrane during treatment of acid mine drainage. Membranes 11(5), 315 (2021). https://doi.org/10.3390/membranes11050315

    Article  Google Scholar 

  • Owolabi, T.O., Abd Rahman, M.A.: Modeling the optical properties of a polyvinyl alcohol-based composite using a particle swarm optimized support vector regression algorithm. Polym. 13(16), 2697 (2021). https://doi.org/10.3390/polym13162697

    Article  Google Scholar 

  • Politzer, P., Murray, J.S.: Molecular electrostatic potentials: concepts and applications. J. Theor. Comput. Chem. 3, 649 (1996)

    Article  Google Scholar 

  • Politzer, P., Landry, S.J., Warnheim, T.: Proposed procedure for using electrostatic potentials to predict and interpret nucleophilic processes. J. Phys. Chem. 86, 4767–4771 (1982)

    Article  Google Scholar 

  • Politzer, P., Laurence, P.R., Jayasuriya, K.: Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ. Health Persp. 61, 191–202 (1985)

    Article  Google Scholar 

  • Safie, N.E., Azam, M.A., Aziz, M.F., Ismail, M.: Recent progress of graphene-based materials for efficient charge transfer and device performance stability in perovskite solar cells. Int. J. Energy Res. 45(2), 1347–1374 (2021). https://doi.org/10.1002/er.5876

    Article  Google Scholar 

  • Shekhar, S., Sarkar, A., Sharma, B., Jain, P.: Electrochemical evaluation of functionalized graphene oxide filled PVA-chitosan biohybrid for supercapacitor applications. J. Appl. Polym. Sci. 137(17), 48610 (2020). https://doi.org/10.1002/app.48610

    Article  Google Scholar 

  • Stergiou, A., Canton-Vitoria, R., Psarrou, M.N., Economopoulos, S.P., Tagmatarchis, N.: Functionalized graphene and targeted applications–Highlighting the road from chemistry to applications. Prog. Mater. Sci. 114, 100683 (2020). https://doi.org/10.1016/j.pmatsci.2020.100683

    Article  Google Scholar 

  • Tale, B., Nemade, K.R., Tekade, P.V.: Graphene based nanocomposites for efficient energy conversion and storage in solar cells and supercapacitors: a review. Polym. Plast. Technol. Mater. 60(7), 784–797 (2021). https://doi.org/10.1080/25740881.2020.1851378

    Article  Google Scholar 

  • Wadhwa, H., Kandhol, G., Deshpande, U.P., Mahendia, S., Kumar, S.: Thermal stability and dielectric relaxation behavior of in situ prepared poly (vinyl alcohol)(PVA)-reduced graphene oxide (RGO) composites. Colloid. Polym. Sci. 298(10), 1319–1333 (2020). https://doi.org/10.1007/s00396-020-04718-0

    Article  Google Scholar 

  • Wang, Z., Yao, M., Wang, X., Li, S., Liu, Y., Yang, G.: Influence of reaction media on synthesis of dialdehyde cellulose/GO composites and their adsorption performances on heavy metals. Carbohydr. Polym. 232, 115781 (2020). https://doi.org/10.1016/j.carbpol.2019.115781

    Article  Google Scholar 

  • Woo, J.H., Kim, N.H., Kim, S.I., Park, O.K., Lee, J.H.: Effets of the addition of boric acid on the physical properties of MXene/polyvinyl alcohol (PVA) nanocomposite. Compos. B. Eng. 199, 108205 (2020). https://doi.org/10.1016/j.compositesb.2020.108205

    Article  Google Scholar 

  • Xie, J., Lv, R., Peng, H., Fan, J., Tao, Q., Dai, Y., Liu, Y.: Phosphate functionalized poly (vinyl alcohol)/poly (acrylic acid) (PVA/PAA): an electrospinning nanofiber for uranium separation. J. Radioanal. Nucl. Chem. 326(1), 475–486 (2020). https://doi.org/10.1007/s10967-020-07319-x

    Article  Google Scholar 

  • Zhang, Y., Liang, B., Jiang, Q., Li, Y., Feng, Y., Zhang, L., Xiong, X.: Flexible and wearable sensor based on graphene nanocomposite hydrogels. Smart. Mater. Struct. 29(7), 075027 (2020). https://doi.org/10.1088/1361-665x/ab89ff

    Article  ADS  Google Scholar 

  • Zhang, Q., Lu, W., Wu, M., Qi, G., Yuan, Y., Li, J., Zhang, H.: Preparation and properties of cellulosenanofiber (CNF)/polyvinyl alcohol (PVA)/graphene oxide (GO): Application of CO2 absorption capacity and molecular dynamics simulation. J. Environ. Manage. 302, 114044 (2022). https://doi.org/10.1016/j.jenvman.2021.114044

    Article  Google Scholar 

  • Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account 120, 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, for funding this research work through the project number: (IFP-KKU-2020/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sh. Abdel-wahab.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badry, R., Ibrahim, A., Gamal, F. et al. Design and implementation of low-cost gas sensor based on functionalized graphene quantum dot/Polyvinyl alcohol polymeric nanocomposites. Opt Quant Electron 55, 247 (2023). https://doi.org/10.1007/s11082-022-04510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04510-0

Keywords

Navigation