Skip to main content
Log in

Spiral phase plate for generation of scalar vortex beam made on fused silica by laser-induced microplasma

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Spiral phase plates are a common method, which provides direct efficient generation of beams carried orbital angular momentum from Gaussian beams. They are characterized by high efficiency and less complex structure compared to other optical elements used for vortex beams generation. In this paper, we propose to use laser-induced microplasma (a simple, reliable, and high-performance technology) for spiral phase plate fabrication on fused silica. Spiral phase plate fabricated for the wavelength of 1.06 μm was tested using registration of generated intensity distribution in the far field by CCD camera. Test results demonstrate that fabricated plate generates vortex beam with the topological charge equal to 1 and correlate with theoretical concept. The conversion efficiency of fabricated plate was determined by measuring the initial beam power and the transmitted beam through fabricated plate. It appeared to be ∼ 75%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A. (1992). https://doi.org/10.1103/PhysRevA.45.8185

  • Ambrosio, A., Marucci, L., Borbone, F., Roviello, A., Maddalena, P.: Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nat. Commun. (2012). https://doi.org/10.1038/ncomms1996

  • Arbabi, A., Horie, Y., Bagheri, M., Faraon, A.: Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. (2015). https://doi.org/10.1038/nnano.2015.186

  • Arlt, J., Dholakia, K., Allen, L., Padgett, M.J.: The production of multiringed laguerre-gaussian modes by computer-generated holograms. J. Mod. Opt. (1998). https://doi.org/10.1080/09500349808230913

  • Brasselet, E., Malinauskas, M., Zukauskas, A., Juodkazis, S.: Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3517519

  • Cano-Garcia, M., Quintana, X., Oton, J.M., Geday, M.A.: Dynamic multilevel spiral phase plate generator. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-34041-2

  • Curtis, J.E., Grier, D.G.: Structure of optical vortices. Phys. Rev. Lett. (2003). https://doi.org/10.1103/PhysRevLett.90.133901

  • Guillon, M., Forget, B.C., Foust, A.J., De Sars, V., Ritsch-Marte, M., Emiliani, V.: Vortex-free phase profiles for uniform patterning with computer-generated holography. Opt. Express (2017). https://doi.org/10.1364/OE.25.012640

  • Hopp, B., Smausz, T., Vass, C., Szabo, G., Bohme, R., Hirsch, D., Zimmer, K.: Laser-induced backside dry and wet etching of transparent materials using solid and molten tin as absorbers. Appl. Phys. A. (2009). https://doi.org/10.1007/s00339-009-5078-5

  • Huang, L., Chen, X., Muhlenbernd, H., Zhang, H., Chen, S., Bai, B., Tan, Q., Jin, G., Cheah, K.-W., Qiu, C.W., Li, J., Zentgraf, T., Zhang, S.: Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. (2013). https://doi.org/10.1038/ncomms3808

  • Jun, C., Deng-Feng, K., Min, G., Zhi-Liang, F.: Generation of optical vortex using a spiral phase plate fabricated in quartz by direct laser writing and inductively coupled plasma etching. Chin. Phys. Lett. (2009). https://doi.org/10.1088/0256-307X/26/1/014202

  • Karimi, E., Schulz, S.A., Leon, I., De, Qassim, H., Upham, J., Boyd, R.W.: Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. (2014). https://doi.org/10.1038/lsa.2014.48

  • Kostyuk, G.K., Sergeev, M.M., Zakoldaev, R.A., Yakovlev, E.B.: Fast microstructuring of silica glasses surface by NIR laser radiation. Opt. Lasers Eng. (2015). https://doi.org/10.1016/j.optlaseng.2014.12.004

  • Kostyuk, G.K., Zakoldaev, R.A., Koval, V.V., Sergeev, M.M., Rymkevich, V.S.: Laser microplasma as a tool to fabricate phase grating applied for laser beam splitting. Opt. Lasers Eng. (2017). https://doi.org/10.1016/j.optlaseng.2016.12.013

  • Kostyuk, G.K., Stepanyuk, D.S., Shkuratova, V.A., Petrov, A.A., Nesterov, N.A.: The effect of fused quartz structuring by laser-induced microplasma and purification on multisector binary phase plates operation. J. Instrum. Eng. (2022). https://doi.org/10.17586/0021-3454-2022-65-10-747-762

  • Kotlyar, V.V., Kovalev, A.A.: Fraunhofer diffraction of the plane wave by a multilevel (quantized) spiral phase plate. Opt. Lett. (2008). https://doi.org/10.1364/OL.33.000189

  • Kotlyar, V.V., Kovalev, A.A., Porfirev, A.P.: Asymmetric gaussian optical vortex. Opt. Lett. (2017). https://doi.org/10.1364/OL.42.000139

  • Koval, V.V., Sergeev, M.M., Zakoldaev, R.A., Kostyuk, G.K.: Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma. J. Opt. Technol. (2017). https://doi.org/10.1364/JOT.84.000447

  • Lee, W.M., Yuan, X.-C., Cheong, W.C.: Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Opt. Lett. (2004). https://doi.org/10.1364/OL.29.001796

  • Li, W., Morgan, K.S., Li, Y., Miller, J.K., White, G., Watkins, R.J., Johnson, E.G.: Rapidly tunable orbital angular momentum (OAM) system for higher order Bessel beams integrated in time (HOBBIT). Opt. Express. (2019). https://doi.org/10.1364/OE.27.003920

  • Lin, D., Fan, P., Hasman, E., Brongersma, M.L.: Dielectric gradient metasurface optical elements. Science. (2014). https://doi.org/10.1126/science.1253213

  • Liu, B., He, Y., Wong, S., Li, Y.: Multifunctional vortex beam generation by a dynamic reflective metasurface. Adv. Opt. Mater. (2021). https://doi.org/10.1002/adom.202001689

  • Massari, M., Ruffato, G., Gintoli, M., Ricci, F., Romanato, F.: Fabrication and characterization of high-quality spiral phase plates for optical applications. Appl. Opt. (2015). https://doi.org/10.1364/AO.54.004077

  • Maurer, C., Jesacher, A., Furhapter, S., Bernet, S., Ritsch-Marte, M.: Upgrading a microscope with a spiral phase plate. J. Microsc. (2008). https://doi.org/10.1111/j.1365-2818.2008.01968.x

  • Minovich, A.E., Miroshnichenko, A.E., Bykov, A.Y., Murzina, T.V., Neshev, D.N., Kivshar, Y.S.: Functional and nonlinear optical metasurfaces. Laser Photon. Rev. (2015). https://doi.org/10.1002/lpor.201400402

  • Ng, J., Lin, Z., Chan, C.T.: Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. (2010). https://doi.org/10.1103/PhysRevLett.104.103601

  • Oemrawsingh, S.S.R., Van Houwelingen, J.A.W., Eliel, E.R., Woerdman, J.P., Verstegen, E.J.K., Kloosterboer, J.G., Hoft, G.W.: Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. (2004). https://doi.org/10.1364/AO.43.000688

  • Padgett, M.J., Allen, L.: The poynting vector in Laguerre-Gaussian laser modes. Opt. Commun. (1995). https://doi.org/10.1016/0030-4018(95)00455-H

  • Padgett, M.J., Allen, L.: Orbital angular momentum exchange in cylindrical-lens mode converters. J. Opt. B. (2002). https://doi.org/10.1088/1464-4266/4/2/362

  • Porfirev, A., Kuchmizhak, A.: Non-ring perfect optical vortices with p-th order symmetry generated using composite diffractive optical elements. Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5052274

  • Ruffato, G., Massari, M., Romanato, F.: Generation of high-order Laguerre-Gaussian modes by means of spiral phase plates. Opt. Lett. (2014). https://doi.org/10.1364/OL.39.005094

  • Ruffato, G., Massari, M., Carli, M., Romanato, F.: Spiral phase plates with radial discontinuities for the generation of multiring orbital angular momentum beams: fabrication, characterization, and application. Opt. Eng. (2015). https://doi.org/10.1117/1.OE.54.11.111307

  • Ruffato, G., Massari, M., Parisi, G., Romanato, F.: Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics. Opt. Express. (2017). https://doi.org/10.1364/OE.25.007859

  • Scipioni, M., Tyson, R.K., Viegas, J.: Mode purity comparison of optical vortices generated by a segmented deformable mirror and a static multilevel phase plate. Appl. Opt. (2008). https://doi.org/10.1364/AO.47.005098

  • Shi, L., Zhang, Z., Cao, A., Luo, X., Deng, Q.: One exposure processing to fabricate spiral phase plate with continuous surface. Opt. Express. (2015). https://doi.org/10.1364/OE.23.008620

  • Sueda, K., Miyaji, G., Miyanaga, N., Nakatsuka, M.: Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express. (2004). https://doi.org/10.1364/OPEX.12.003548

  • Tao, S.H., Yuan, X.-C., Lin, J., Peng, X., Niu, H.B.: Fractional optical vortex beam induced rotation of particles. Opt. Express (2005). https://doi.org/10.1364/OPEX.13.007726

  • Toyoda, K., Miyamoto, K., Aoki, N., Morita, R., Omatsu, T.: Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett. (2012). https://doi.org/10.1021/nl301347j

  • Tyson, R.K., Scipioni, M., Viegas, J.: Generation of an optical vortex with a segmented deformable mirror. Appl. Opt. (2008). https://doi.org/10.1364/AO.47.006300

  • Veiko, V.P., Volkov, S.A., Zakoldaev, R.A., Sergeev, M.M., Samokhvalov, A.A., Kostyuk, G.K., Milyaev, K.A.: Laser-induced microplasma as a tool for microstructuring transparent media. Quantum Electron. (2017). https://doi.org/10.1070/QEL16377

  • Vickers, J., Burch, M., Vyas, R., Singh, S.: Phase and interference properties of optical vortex beams. J. Opt. Soc. Am. A (2008). https://doi.org/10.1364/JOSAA.25.000823

  • Wang, J., Niino, H., Yabe, A.: One-step microfabrication of fused silica by laser ablation of an organic solution. Appl. Phys. A. (1999). https://doi.org/10.1007/S003390050863

  • Wang, W., Li, Y., Guo, Z., Li, R., Zhang, J., Zhang, A., Qu, S.: Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation. J. Opt. (2015). https://doi.org/10.1088/2040-8978/17/4/045102

  • Wang, X., Kuchmizhak, A.A., Brasselet, E., Juodkazis, S.: Dielectric geometric phase optical elements fabricated by femtosecond direct laser writing in photoresists. Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4982602

  • Wei, H., Amrithanath, A.K., Krishnaswamy, S.: 3D printing of micro-optic spiral phase plates for the generation of optical vortex beams. IEEE Photonics Technol. Lett. (2019). https://doi.org/10.1109/LPT.2019.2903151

  • Wisniewski-Barker, E., Padgett, M.J.: Orbital angular momentum. In: Andrews, D.L. (ed.) Photonics, pp. 321–340. Wiley, New Jersey. (2015)

  • Xu, S., Liu, B., Pan, C., Ren, L., Tang, B., Hu, Q., Jiang, L.: Ultrafast fabrication of micro-channels and graphite patterns on glass by nanosecond laser-induced plasma-assisted ablation (LIPAA) for electrofluidic devices. J. Mater. Process. Technol. (2017). https://doi.org/10.1016/j.jmatprotec.2017.04.028

  • Xuewen, W., Nie, Z., Liang, Y., Wang, J., Li, T., Jia, B.: Recent advances on optical vortex generation. Nanophotonics. (2018). https://doi.org/10.1515/nanoph-2018-0072

  • Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics. (2011). https://doi.org/10.1364/AOP.3.000161

  • Zakoldaev, R., Kostyuk, G., Rymkevich, V., Koval, V., Sergeev, M., Veiko, V., Yakovlev, E., Sivers, A.: Fast fabrication of multilevel phase plates used for laser beam correction. J. Laser Micro Nanoeng. (2017). https://doi.org/10.2961/jlmn.2017.03.0018

  • Zhang, J., Sugioka, K., Midorikawa, K.: High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers. Appl. Phys. A. (1999). https://doi.org/10.1007/S003390051551

  • Zhang, L., Mei, S., Huang, K., Qui, C.-W.: Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. (2016). https://doi.org/10.1002/adom.201500690

  • Zhang, K., Wang, Y., Yuan, Y., Burokur, S.N.: A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces. Appl. Sci. (2020). https://doi.org/10.3390/app10031015

  • Zhu, X., Vannahme, C., Hojlund-Nielsen, E., Mortensen, N.A., Kristensen, A.: Plasmonic colour laser printing. Nat. Nanotechnol. (2016). https://doi.org/10.1038/nnano.2015.285

  • Zhu, X., Yan, W., Levy, U., Mortensen, N.A., Kristensen, A.: Resonant-laser-printing of structural colors on high-index dielectric metasurfaces. Sci. Adv. (2017). https://doi.org/10.1126/sciadv.1602487

  • Zhu, X., Engelberg, J., Remennik, S., Zhou, B., Pedersen, J.N., Uhd Jepsen, P., Levy, U., Kristensen, A.: Resonant laser printing of optical metasurfaces. Nano Lett. (2022). https://doi.org/10.1021/acs.nanolett.1c04874

  • Zukauskas, A., Malinauskas, M., Brasselet, E.: Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4828662

Download references

Funding

The study was funded by a grant of the Russian Science Foundation (Project No. 20-71-10103).

Author information

Authors and Affiliations

Authors

Contributions

KG and SV wrote the main manuscript text; SV prepared graphical materials; all authors did experiments, discussed the results, and reviewed the manuscript.

Corresponding author

Correspondence to Victoria Shkuratova.

Ethics declarations

Conflict of interest

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Fundamentals of Laser Assisted Micro- & Nanotechnologies, Guest edited by Vadim Veiko, Tigran Vartanyan, Andrey Belikov and Eugene Avrutin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyuk, G., Shkuratova, V., Petrov, A. et al. Spiral phase plate for generation of scalar vortex beam made on fused silica by laser-induced microplasma. Opt Quant Electron 55, 344 (2023). https://doi.org/10.1007/s11082-022-04491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04491-0

Keywords

Navigation