Skip to main content
Log in

Design and simulation of an all-optical Fredkin gate based on silicon slab-waveguide in a 2-D photonic crystal

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we simulated and designed an all-optical Fredkin gate. The proposed structure is very simple and compact. We used air holes with radii of 177 nm in a silicon slab waveguide in a square lattice with a lattice constant of a = 466 nm. First, we created input and output waveguides in the structure. After that, by imposing a non-linear ring resonator, we controlled the coupling of light. This ring is composed of doped glass with linear and non-linear refractive indices of 1.4 and 10–14 m2/w respectively. The results of the time analysis showed that the worst rising time of the proposed gate is 0.61 ps and hence is very fast. We set the parameters of the lattice in a way that the proposed device works on λ = 1550 nm. All of the mentioned features make this gate suitable for all-optical integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, [Reza Talebzadeh], upon reasonable request.

References

  • Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  ADS  Google Scholar 

  • Beiranvand, R., Mir, A., Talebzadeh, R.: Design and simulation of a very fast and compact all-optical Full-Subtractor based on nonlinear effect in 2D photonic crystals. Opt. Quantum Electron. 53(7), 1–13 (2021)

    Article  Google Scholar 

  • Bennet, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Caballero, L.P., Vasco, J.P., Guimaraes, P.S.S., Neto, O.P.V.: All-optical majority and Feynman gates in photonic crystals. In: 2015 30th Symposium on Microelectronics Technology and Devices (SBMicro), pp. 1–4. IEEE (2015)

  • Chhipa, M.K., et al.: Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength division multiplexing application. Opt. Eng. 56(1), 015107 (2017)

    Article  ADS  Google Scholar 

  • Chhipa, M.K., Madhav, B.T.P., Suthar, B.: An all-optical ultracompact microring-resonator-based optical switch. J. Comput. Electron. 20(1), 419–425 (2021)

    Article  Google Scholar 

  • Chhipa, M.K., et al.: Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength division multiplexing application. Opt. Eng. 56(1), 015107(2017)

    Article  ADS  Google Scholar 

  • Chhipa, M.K., et al.: Ultra-compact with improved data rate optical encoder based on 2D linear photonic crystal ring resonator. Photonic Netw. Commun. 44(1), 30–40 (2022)

    Article  Google Scholar 

  • Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Goswami, K., et al.: Realization of ultra-compact all-optical logic AND Gate based on photonic crystal waveguide. In: Bera, R., Sarkar, S.K., Chakraborty, S. (eds.) Advances in communication, devices and networking, pp. 61–68. Springer, Singapore (2022)

    Chapter  Google Scholar 

  • Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4× 2 encoder based on photonic crystals. Optik 126(20), 2368–2372 (2015)

    Article  ADS  Google Scholar 

  • Hassangholizadeh-Kashtiban, M., Alipour-Banaei, H., Tavakoli, M.B., Sabbaghi-Nadooshan, R.: An ultra fast optical reversible gate based on electromagnetic scattering in nonlinear photonic crystal resonant cavities. Opt. Mater. 94, 371–377 (2019)

    Article  ADS  Google Scholar 

  • Hassangholizadeh-Kashtiban, M., Alipour-Banaei, H., Tavakoli, M.B., Sabbaghi-Nadooshan, R.: All-optical Fredkin gate using photonic-crystal-based nonlinear cavities. Appl. Opt. 59(3), 635–641 (2020)

    Article  ADS  Google Scholar 

  • Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8(3), 173–190 (2001)

    Article  ADS  Google Scholar 

  • Jonnopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  • Kosmidou, E.P., Tsiboukis, T.D.: An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials. Opt. Quantum Electron. 35, 931–946 (2003)

    Article  Google Scholar 

  • Landauer, R.: Irreversibility and heat generation in the computing processes. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MATH  Google Scholar 

  • Liu, Q., et al.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16(23), 18992–19000 (2008)

    Article  ADS  Google Scholar 

  • Maleki, M.J., Soroosh, M.: Improving the performance of 2-to-4 optical decoders based on photonic crystal structures. Crystals 9, 635 (2019)

    Article  Google Scholar 

  • Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64(13), 1233–1239 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  • Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Design and simulation of all optical decoder based on nonlinear PhCRRs. Optik 156, 701–706 (2018)

    Article  ADS  Google Scholar 

  • Mohebbi, Z., Nozhat, N., Emami, F.: High contrast all-optical logic gates based on 2D nonlinear photonic crystal. Opt. Commun. 355, 130–136 (2015)

    Article  ADS  Google Scholar 

  • Ohtaka, K.: Energy band of photons and low-energy photon diffraction. Phys. Rev. B 56(20), 5057–5067 (1979)

    Article  ADS  Google Scholar 

  • Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32(6), 3266–3276 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  • Rabus, D.G.: Integrated Ring Resonators. Springer, Berlin (2007)

    Google Scholar 

  • Radhouene, M., Chhipa, M.K., Najjar, M., Robinson, S., Suthar, B.: Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sens. 7(4), 311–316 (2017)

    Article  ADS  Google Scholar 

  • Radhouene, M., et al.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. Optik 172, 924–929 (2018)

    Article  ADS  Google Scholar 

  • Rani, P., Kalra, Y., Sinha, R.K.: Design of all optical logic gates in photonic crystal waveguides. Optik 126(9–10), 950–955 (2015)

    Article  ADS  Google Scholar 

  • Roy, S., Sethi, P., Topolancik, J., Vollmer, F.: All-optical reversible logic gates with optically controlled bacteriorhodopsin protein-coated microresonators. Adv. Opt. Technol. (2012)

  • Salmanpour, A., Mohammadnejad, S., Bahrami, A.: Photonic crystal logic gates: an overview. Opt. Quant. Electron. 47(7), 2249–2275 (2015)

    Article  MATH  Google Scholar 

  • Skorobogatiy, M., Yang, J.: Fundamentals of Photonic Crystal Guiding. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  • Taflove, A., Hegnese, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (1998)

    Google Scholar 

  • Upadhyay, A., Singh, S., Prajapati, Y.K., Tripathi, R.: Numerical analysis of large negative dispersion and highly birefringent photonic crystal fiber. Optik 218, 164997 (2020)

    Article  ADS  Google Scholar 

  • Vali-Nasab, A.M., Mir, A., Talebzadeh, R.: Design and simulation of an all optical full-adder based on photonic crystals. Opt. Quantum Electron. 51, 1–14 (2019)

    Article  Google Scholar 

  • Veisi, E., Seifouri, M., Olyaee, S.: Design and numerical analysis of multifunctional photonic crystal logic gates. Opt. Laser Technol. 151, 108068 (2022)

    Article  Google Scholar 

  • Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  ADS  Google Scholar 

Download references

Funding

The authors have no funding to report.

Author information

Authors and Affiliations

Authors

Contributions

To prepare this manuscript, the idea, guidance, checking the results, and forming the manuscript was done by RT. RB did the simulation. SHM translated and revised the manuscript before submitting.

Corresponding author

Correspondence to Reza Talebzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebzadeh, R., Beiranvand, R. & Moayed, S.H. Design and simulation of an all-optical Fredkin gate based on silicon slab-waveguide in a 2-D photonic crystal. Opt Quant Electron 55, 241 (2023). https://doi.org/10.1007/s11082-022-04489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04489-8

Keywords

Navigation