Skip to main content
Log in

Investigation into the temperature dependence of electron leakage in GaN-based blue laser diode structures by numerical simulation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The electron leakage characteristics of GaN-based high-power blue laser diodes (LDs) can be strongly influenced by temperature. To address this aspect, we investigated the temperature dependence of the electron leakage current in an AlGaN electron-blocking layer (EBL) of an InGaN/GaN blue LD structure using numerical simulations. For most cases of the Al compositions and doping concentrations of the AlGaN EBL considered in this study, the electron leakage current decreases significantly with increasing temperature despite the increase in the thermal energy of electrons with respect to the temperature. As a result, the operation current of InGaN blue LDs does not decrease by electron leakage current as the temperature increases, and the LD performance could be improved with increasing temperature in some cases owing to the reduced electron leakage. This counter-intuitive temperature dependence results from the increased potential barrier for electrons with increasing temperature owing to the increased Mg acceptor activation in the EBL with temperature. Furthermore, the obtained simulation results are analyzed using a thermionic emission model, which successfully explains the temperature dependence of the electron leakage characteristics of InGaN blue LDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Alahyarizadeh, G., Rahmani, R.: Enhancement of performance characteristics of violet InGaN DQW laser diodes using InGaN/GaN multilayer barriers. Optik. 127, 7635–7641 (2016a)

    ADS  Google Scholar 

  • Alahyarizadeh, G., Amirhoseiny, M., Hassan, Z.: Effect of different EBL structures on deep violet InGaN laser diodes performance. Opt. Laser Technol. 76, 106–112 (2016)

    ADS  Google Scholar 

  • Baumann, M., Balck, A., Malchus, J., Chacko, R.V., Marfels, S., Witte, U., Dinakaran, D., Ocylok, S., Weinbach, M., Bachert, C., Kösters, A., Krause, V., König, H., Lell, A., Stojetz, B., Ali, M., Strauss, U.: 1000 W blue fiber-coupled diode laser emitting at 450 nm. Proc. SPIE 10900, 1090005 (2019)

  • Chen, P., Feng, M.X., Jiang, D.S., Zhao, D.G., Liu, Z.S., Li, L., Wu, L.L., Le, L.C., Zhu, J.J., Wang, H., Zhang, S.M., Yang, H.: Improvement of characteristics of InGaN-based laser diodes with undoped InGaN upper waveguide layer. J. Appl. Phys. 112, 113105 (2012)

    ADS  Google Scholar 

  • Cheng, L., Chen, H., Wu, S.: Improving hole injection and carrier distribution in InGaN light-emitting diodes by removing the electron blocking layer and including a unique last quantum barrier. J. Appl. Phys. 118, 083104 (2015)

    ADS  Google Scholar 

  • Chi, Y.C., Hsieh, D.H., Lin, C.Y., Chen, H.Y., Huang, C.Y., He, J.H., Ooi, B., DenBaars, S.P., Nakamura, S., Kuo, H.C., Lin, G.R.: Phosphorous diffuser diverged blue laser diode for indoor lighting and communication. Sci. Rep. 5, 18690 (2015)

    ADS  Google Scholar 

  • Crosslight®: LASTIP (Laser Technology Integrated Program). Available: http://crosslight.com/products/lastip/

  • Crump, P., Wang, J., Das, S., Grimshaw, M., Farmer, J., DeVito, M., Dong, W., Crum, T., Wise, D., Feng, Y.: >360 W and > 70% efficient GaAs-based diode lasers. Proc. SPIE 5711, 21–29 (2005)

    ADS  Google Scholar 

  • Fiorentini, V., Bernardini, F., Ambacher, O.: Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Appl. Phys. Lett. 80, 1204–1206 (2002)

    ADS  Google Scholar 

  • Hagino, H., Kawaguchi, M., Nozaki, S., Mochida, A., Kano, T., Takigawa, S., Katayama, T., Tanaka, T.: High-power InGaN laser array with advanced lateral-corrugated waveguides. IEEE J. Quantum Electron 57, 2600107 (2021)

    Google Scholar 

  • Horio, K., Yanai, H.: Numerical modeling of heterojunctions including the thermionic emission mechanism at the heterojunction interface. IEEE T. Electron Devices 37, 1093–1098 (1990)

    ADS  Google Scholar 

  • Hou, Y., Zhao, D., Liang, F., Liu, Z., Yang, J., Chen, P.: Enhancing the efficiency of GaN-based laser diodes by the designing of a p-AlGaN cladding layer and an upper waveguide layer. Opt. Mater. Express 11, 1780–1790 (2021)

    ADS  Google Scholar 

  • Huang, Q., Sui, P., Huang, F., Lin, H., Wang, B., Lin, S., Wang, P., Xu, J., Cheng, Y., Wang, Y.: Toward high-quality laser-driven lightings: Chromaticity-tunable phosphor-in-glass film with phosphor pattern design. Laser Photon. Rev. 2200040 (2022)

  • Kawaguchi, M., Imafuji, O., Nozaki, S., Hagino, H., Takigawa, S., Katayama, T., Tanaka, T.: Optical-loss suppressed InGaN laser diodes using undoped thick waveguide structure. Proc. SPIE 9748, 974818 (2016)

    Google Scholar 

  • Kioupakis, E., Rinke, P., Van de Walle, C.G.: Determination of internal loss in nitride lasers from first principles. Appl. Phys. Express. 3, 082101 (2010)

    ADS  Google Scholar 

  • Laws, G.M., Larkins, E.C., Harrison, I., Molloy, C., Somerford, D.: Improved refractive index formulas for the AlxGa1-xN and InyGa1-yN alloys. J. Appl. Phys. 89, 1108–1115 (2001)

    ADS  Google Scholar 

  • Lee, C., Zhang, C., Cantore, M., Farrell, R.M., Oh, S.H., Margalith, T., Speck, J.S., Nakamura, S., Bowers, J.E., DenBaars, S.P.: 4 gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Opt. Express. 23, 16232–16237 (2015)

    ADS  Google Scholar 

  • Li, X., Zhao, D.G., Jiang, D.S., Chen, P., Liu, Z.S., Zhu, J.J., Yang, J., Liu, W., He, X.G., Li, X.J., Liang, F., Zhang, L.Q., Liu, J.P., Yang, H.: The effectiveness of electron blocking layer in InGaN-based laser diodes with different indium content. Phys. Status Solidi A. 213, 2223–2228 (2016)

    ADS  Google Scholar 

  • Li, S., Yu, G., Lang, R., Lei, M., Chen, H., Khan, M.S.A., Meng, L., Zong, H., Jiang, S., Wen, P., Yang, W., Hu, X.: Analytical models of electron leakage currents in gallium nitride-based laser diodes and light-emitting diodes. Opt. Express 30, 3973–3988 (2022)

    ADS  Google Scholar 

  • Liang, F., Zhao, D., Jiang, D., Liu, Z., Zhu, J., Chen, P., Yang, J., Liu, W., Li, X., Liu, S., Xing, Y., Zhang, L., Long, H., Li, M.: New design of upper waveguide with unintentionally doped InGaN layer for InGaN-based laser diode. Opt. Laser Technol. 97, 284–289 (2017)

    ADS  Google Scholar 

  • Lin, B.C., Chen, K.J., Wang, C.H., Chiu, C.H., Lan, Y.P., Lin, C.C., Lee, P.T., Shih, M.H., Kuo, Y.K., Kuo, H.C.: Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer. Opt. Express. 22, 463–469 (2014)

    ADS  Google Scholar 

  • Mehta, K., Liu, Y., Wang, J., Jeong, H., Detchprohm, T., Park, Y.J., Alugubelli, S.R., Wang, S., Ponce, F.A., Shen, S., Dupuis, R.D., Yoder, P.D.: Theory and design of electron blocking layers for III-N-based laser diodes by numerical simulation. IEEE J. Quantum Electron 54, 2001310 (2018)

    Google Scholar 

  • Meyaard, D.S., Shan, Q., Dai, Q., Cho, J., Schubert, E.F., Kim, M.H., Sone, C.: On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes. Appl. Phys. Lett. 99, 041112 (2011)

    ADS  Google Scholar 

  • Murayama, M., Nakayama, Y., Yamazaki, K., Hoshina, Y., Watanabe, H., Fuutagawa, N., Kawanishi, H., Uemura, T., Narui, H.: Watt-class green (530 nm) and blue (465 nm) laser diodes. Phys. Status Solidi A. 215, 1700513 (2018)

    ADS  Google Scholar 

  • Nagahama, S., Yanamoto, T., Sano, M., Mukai, T.: Wavelength Dependence of InGaN Laser Diode characteristics. Jpn J. Appl. Phys. 40, 3075–3081 (2001)

    ADS  Google Scholar 

  • Nakatsu, Y., Nagao, Y., Hirao, T., Hara, Y., Masui, S., Yanamoto, T., Nagahama, S.: Blue and green InGaN semiconductor lasers as light sources for displays. Proc. SPIE 11280, 112800S (2020)

    Google Scholar 

  • Onwukaeme, C., Ryu, H.Y.: Investigation of the optimum mg doping concentration in p-type-doped layers of InGaN blue laser diode structures. Crystals. 11, 1335 (2021)

    Google Scholar 

  • Onwukaeme, C., Lee, B., Ryu, H.Y.: Temperature dependence of electron leakage current in InGaN blue light-emitting diode structures. Nanomaterials. 12, 2405 (2022)

    Google Scholar 

  • Piprek, J.: Semiconductor Optoelectronic Devices. Academic Press, London, UK (2003)

    Google Scholar 

  • Piprek, J., Li, S.: Electron leakage effects on GaN-based light-emitting diodes. Opt. Quantum Electron. 42, 89–95 (2010)

    Google Scholar 

  • Piprek, J.: Comparative efficiency analysis of GaN-based light-emitting diodes and laser diodes. Appl. Phys. Lett. 109, 021104 (2016a)

    ADS  Google Scholar 

  • Piprek, J.: Analysis of efficiency limitations in high-power InGaN/GaN laser diodes. Opt. Quantum Electron. 48, 471 (2016b)

    Google Scholar 

  • Prajoon, P., Nirmal, D., Menokey, M.A., Pravin, J.C.: Temperature-dependent efficiency droop analysis of InGaN MQW light-emitting diode with modified ABC model. J. Comput. Electron. 15, 1511–1520 (2016)

    Google Scholar 

  • Ryu, H.Y., Ha, K.H., Son, J.K., Paek, H.S., Sung, Y.J., Kim, K.S., Kim, H.K., Park, Y., Lee, S.N., Nam, O.H.: Comparison of output power of InGaN laser diodes for different Al compositions in the AlGaN n-cladding layer. J. Appl. Phys. 105, 103102 (2009)

    ADS  Google Scholar 

  • Ryu, H.Y., Kim, D.H.: High-brightness phosphor-conversion white light source using InGaN blue laser diode. J. Opt. Soc. Korea. 14, 415–419 (2010)

    Google Scholar 

  • Ryu, H.Y.: Investigation into the anomalous temperature characteristics of InGaN double quantum well blue laser diodes using numerical simulation. Nanoscale Res. Lett. 12, 366 (2017)

    ADS  Google Scholar 

  • Uchida, S., Takeya, M., Ikeda, S., Mizuno, T., Fujimoto, T., Matsumoto, O., Goto, S., Tojyo, T., Ikeda, M.: Recent progress in high-power blue-violet lasers. IEEE J. Selected Topics in Quantum Electron. 9, 1252–1259 (2003)

    ADS  Google Scholar 

  • Wang, W., Li, D., Liu, N., Chen, Z., Wang, L., Liu, L., Li, L., Wan, C., Chen, W., Hu, X., Du, W.: Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser diodes. Appl. Phys. Lett. 100, 031105 (2012)

    ADS  Google Scholar 

  • Watson, S., Tan, M., Najda, S.P., Perlin, P., Leszczynski, M., Targowaski, G., Grzanka, S., Kelly, A.C.: Visible light communications using a directly modulated 422 nm GaN laser diode. Opt. Lett. 38, 3792–3794 (2013)

    ADS  Google Scholar 

  • Wierer, J.J., Tsao, J.Y., Sizov, D.S.: Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photonics Rev. 7, 963–993 (2013)

    ADS  Google Scholar 

  • Wu, T.C., Chi, Y.C., Wang, H.Y., Tsai, C.T., Lin, G.R.: Blue laser diode enables underwater communication at 12.4 gbps. Sci. Rep. 7, 40480 (2017)

    ADS  Google Scholar 

  • Xing, Y., Zhao, D.G., Jiang, D.S., Li, X., Liu, Z.S., Zhu, J.J., Chen, P., Yang, J., Liu, W., Liang, F., Liu, S.T., Zhang, L.Q., Wang, W.J., Li, M., Zhang, Y.T., Du, G.T.: Suppression of electron and hole overflow in GaN-based near-ultraviolet laser diodes. Chin. Phys. B. 27, 028101 (2018)

    ADS  Google Scholar 

  • Yang, J., Zhao, D.G., Zhu, J.J., Liu, Z.S., Jiang, D.S., Chen, P., Liang, F., Liu, S.T., Xing, Y.: Effect of mg doping concentration of electron blocking layer on the performance of GaN-based laser diodes. Appl. Phys. B. 125, 235 (2019)

    ADS  Google Scholar 

  • Zhong, Z., Lu, S., Li, J., Lin, W., Huang, K., Li, S., Cai, D., Kang, J.: Design and fabrication of high power InGaN blue laser diode over 8 W. Opt. Laser Technol. 139, 106985 (2021)

    Google Scholar 

Download references

Funding

This work was supported by Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Contributions

Data collection and investigation were performed by Bohae Lee. Conceptualization and formal analyses were performed by Han-Youl Ryu. The first draft of the manuscript was written by Bohae Lee and the final manuscript was written by Han-Youl Ryu. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Han-Youl Ryu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors listed consent to publication of this work in Optical and Quantum Electronics.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Ryu, HY. Investigation into the temperature dependence of electron leakage in GaN-based blue laser diode structures by numerical simulation. Opt Quant Electron 55, 154 (2023). https://doi.org/10.1007/s11082-022-04440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04440-x

Keywords

Navigation