Skip to main content
Log in

Porous Tamm Plasmon based refractive index gas sensor using four different Plasmon active metals

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, a multilayer 1D-photonic crystal made with alternating porous silicon materials (PSi1 and PSi2) is used to realize a distributed Bragg reflector where a thin Plasmon active metal layer can be deposited on the top to excite Tamm Plasmon Polaritons. Based on the realization of the Tamm plasmon, a gas sensor capable of detecting change in refractive index of gas sample was designed with a cavity layer (where the maximum intensity of the field took place) in between the metal and the distributed Bragg reflector structure. A comparative analysis has been performed by considering Tamm Plasmon Polaritons excitation using four different Plasmon active metals namely Ag, Au, Al and Pt. We also investigate different performance characteristics of the sensor as a function of different number of pairs constituting the DBR. Our investigation reveals that relevant performance characteristics of the sensor was found to be maximum for Tamm Plasmon Polaritons excitation using Ag. Additionally, the optimum value of number of pairs of alternating porous silicon layers for best performance was found to be N=8 pairs. The proposed sensor is based on a very simple structure and with the choice of appropriate metal layer, the device would be an effective choice for biosensing applications in coming days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ahmed, A.M., Mehaney, A.: Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 9, 6973 (2019)

    Article  ADS  Google Scholar 

  • Alabastri, A., Tuccio, S., Giugni, A., Toma, A., Liberale, C., Das, G., Angelis, F.D., Fabrizio, E.D., Zaccaria, R.P.M.: Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature. Mater. 6, 4879–4910 (2013)

    Article  Google Scholar 

  • Carstensen, J., Christophersen, M., Hasse, G., Föll, H.H.: Parameter dependence of pore formation in silicon within a model of local current bursts. Solid State (a) 182, 63–69 (2000)

    Article  Google Scholar 

  • Dasgupta, A., Gayen, R.K., Maji, P.S.: Refractive index sensing performances for single -metal and bimetallic Tamm plasmon configurations with an investigation of different structural configurations dependency. Opt. Quant. Electron. 54(1–14), 44 (2022)

    Article  Google Scholar 

  • Föll, H., Carstensen, J., Christophersen, M., Hasse, G.: A New view of silicon electrochemistry. Phys. Solid State (a) 182, 7–16 (2000)

    Article  ADS  Google Scholar 

  • Föll, H., Carstensen, J., Christophersen, M. Hasse, G.: In: P. Schmuki, D.J. Lockwood, Y.H. Ogata, H.S. Isaacs (Eds.), Pits and Pores II: Formation Properties and Significant for Advanced Materials, Electrochemical Society Meeting Proceedings. p. 36 (2001)

  • Föll, H., Christophersen, M., Carstensen, J., Hasse, G.: Formation and application of porous silicon. Mater. Sci. and Eng. R Reports 39(4), 93–141 (2002). https://doi.org/10.1016/S0927-796X(02)00090-6

    Article  Google Scholar 

  • Föll, H., Christophersen, M., Carstensen, J., Hasse, G.: Formation and application of porous silicon. Mater. Sci. Eng. R Rep. 39, 93–141 (2002)

    Article  Google Scholar 

  • Ghatak, A.K., Thayagarajan, K., Shenoy, M.R.: Numerical analysis of planar waveguide using matrix method. J. Lightwave Technol. 5(5), 660–667 (1987)

    Article  ADS  Google Scholar 

  • Gong, Y.K., Liu, X.M., Lu, H., Wang, L.R., Wang, G.X.: Perfect absorber supported by optical Tamm states in Plasmonic waveguide. Opt. Express 19(19), 18393–18398 (2011)

    Article  ADS  Google Scholar 

  • Heinicke, J., Italiano, F., Lapenna, V., Martinelli, G., Nuccio, P.M.: Coseismic geochemical variations in some gas emissions of Umbria Region (Central Italy). Phys. Chem. Earth. 25, 289–293 (2000)

    Article  Google Scholar 

  • Italiano, F., Martinelli, G., Bonfanti, P., Caracausi, A.: Long-term (1997–2007) geochemical monitoring of gases from the Umbria-Marche region. Tectonophysics 476, 282–296 (2009)

    Article  ADS  Google Scholar 

  • Jha, R., Sharma, A.: High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Opt. Lett. 34, 749–751 (2009)

    Article  ADS  Google Scholar 

  • Kanazawa, E., Sakai, G., Shimanoe, K., Kanmura, Y., Teraoka, Y., Miura, N., Yamazoe, N.: Metal oxide semiconductor N2O sensor for medical use. Sens. Actuators B 77, 72–77 (2001)

    Article  Google Scholar 

  • Kumar, S., Shukla, M.K., Maji, P.S., Das, R.: Self-referenced refractive index sensing with hybrid-Tamm-plasmon-Polariton modes in sub-wavelength analyte layers. J. Phys. D. Appl. Phys. 50, 375106 (2017)

    Article  Google Scholar 

  • Levitsky, I.: Porous silicon structures as optical gas sensors. Sensors 15, 19968–19991 (2015)

    Article  ADS  Google Scholar 

  • Liso, G., Fidani, C.: Electrical charges associated with sky darkening and the Turin Shroud. Int. J Develop. Res. 4, 2790–2797 (2014)

    Google Scholar 

  • Ordal, M.A., Robert, J., Bell, R.W., Alexander, L.L., Long, M., Querry, R.: Optical properties of fourteen metals in the infrared and far infrared: Al Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985)

    Article  ADS  Google Scholar 

  • Patel, P., Mishra, V., Panchal, A.: Theoretical and experimental study of nanoporous silicon photonic microcavity optical sensor devices. Adv. Natl. Sci. Nanosci. Nanotechnol. 3, 035016 (2012)

    Article  ADS  Google Scholar 

  • Martı́n-Palma, R.J., Torres-Costa, V., Arroyo-Hernández, M., Manso, M., Pérez-Rigueiro, J., Martı́nez-Duart, J.M.: Porous silicon multilayer stacks for optical biosensing applications. Microelectron. J. 35, 45–48. (2004)

  • Rasson, J., Poncelet, O., Mouchet, S.R., Deparis, O., Francis, L.A.: Vapor sensing using a bio-inspired porous silicon photonic crystal. Mater. Today Proc 4, 5006–5012 (2017)

    Article  Google Scholar 

  • Sailor, M.J.: Porous silicon in practice: preparation, characterization and applications, pp. 1–12. Wiley, New Jersey (2012)

    Google Scholar 

  • Salem, M.S., Sailor, M.J., Harraz, F.A., Sakka, T., Ogata, Y.H.: Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds. J. Appl. Phys. 100, 083520 (2006)

    Article  ADS  Google Scholar 

  • Salzberg, C.D., Villa, J.J.: Infrared refractive indexes of silicon germanium and modified selenium glass. JOSA 47, 244–246 (1957)

    Article  ADS  Google Scholar 

  • Sasin, M.E., Kaliteevski, M.A., Brand, S., Abram, R.A., Chamberlain, J.M., Iorsh, I.V., Shelykh, I.A., Egorov, A.Y., Vasil’ev, A.P., Mikhrin, V.S., Kavokin, A.V.: Tamm plasmon polaritons: first experimental observation. Superlatt. Microst. 47(1), 44–49 (2010)

    Article  ADS  Google Scholar 

  • Shaban, M., Ahmed, A.M., Abdel-Rahman, E., Hamdy, H.: Tunability and sensing properties of plasmonic/1D photonic crystal. Sci. Rep. 7, 41983 (2017)

    Article  ADS  Google Scholar 

  • Srivastava, T., Das, R., Jha, R.: On the high performance of channel photonic crystal waveguide comprising different plasmonic active metals. Appl. Phys. B 108, 629–634 (2012)

    Article  ADS  Google Scholar 

  • White, I.M., Fan, X.D.: On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)

    Article  ADS  Google Scholar 

  • Wu, C.J., Chung, Y.-H., Syu, B.J., Yang, T.-J.: Band gap extension in a one- dimensional ternary metal-dielectric photonic crystal. Prog. Electromagn. Res. 102, 81–93 (2010)

    Article  Google Scholar 

  • Xi, J.Q., Ojha, M., Cho, W., Plawsky, J.L., Gill, W.N., Gessmann, Th., Schubert, E.F.: Omnidirectional reflector using nanoporous SiO2 as a low-refractive-index material. Opt. Lett. 30, 1518–1520 (2005)

    Article  ADS  Google Scholar 

  • Zaky, A., Ahmed, A.M., Shalaby, A.S., Aly, A.H.: Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoritical optimization. Sci. Rep 6, 9736 (2020)

    Article  ADS  Google Scholar 

  • Zaky, Zaky A., Aly, Arafa H.: Modeling of a biosensor using Tamm resonance excited by graphene. Appl. Opt. 60, 1411–1419 (2021)

    Article  ADS  Google Scholar 

  • Zaky, Z.A., Aly, A.H.: Highly sensitive salinity and temperature sensor using Tamm resonance. Plasmonics 16, 2315–2325 (2021)

    Article  Google Scholar 

  • Zaky, Z.A., Moustafa, B., Aly, A.H.: Plasma cell sensor using photonic crystal cavity. Opt Quant Electron 53, 591 (2021). https://doi.org/10.1007/s11082-021-03201-6

    Article  Google Scholar 

  • Zaky, Z.A., Singh, M.R., Aly, A.H.: Tamm resonance excited by diferent metals and graphene. Photon. Nanostruct. Fundam. App. 49, 100995 (2022). https://doi.org/10.1016/j.photonics.2022.100995

    Article  Google Scholar 

  • Zeng, C., Luo, C., Hao, L., Xie, Y.: The research on magnetic tunable characteristics of photonic crystal defect localized modes with a defect layer of nanoparticle. Chin. Opt. Lett. 12, 11602 (2014)

    Article  ADS  Google Scholar 

  • Zhou, H.C., Yang, G., Wang, K., Long, H., Lu, P.X.: Multiple optical Tamm states at a metal-dielectric mirror interface. Opt. Lett. 35(24), 4112–4114 (2010)

    Article  ADS  Google Scholar 

Download references

Funding

There is no funding associated with the present work.

Author information

Authors and Affiliations

Authors

Contributions

R.S and B.J wrote the manuscript and prepared the figures. R.M edited some figures and edited the manuscript. P.S.M conceptualized the idea and supervised the whole work. All authors reviewed the manuscript. R.S and B.J contributed equally for the article.

Corresponding author

Correspondence to Partha Sona Maji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The authors hereby declare that no animal/human studies are performed in this journal article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R., Jana, B., Mukherjee, R. et al. Porous Tamm Plasmon based refractive index gas sensor using four different Plasmon active metals. Opt Quant Electron 55, 183 (2023). https://doi.org/10.1007/s11082-022-04425-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04425-w

Keywords

Navigation