Skip to main content
Log in

Modification of nickel micropatterns for sensor-active applications from deep eutectic solvents

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, we proposed a rapid single-stage laser-induced fabrication of bimetallic micropatterns on the oxide glass surface using deep eutectic solvents (DESs) consisting of choline chloride, citric acid along with nickel, copper and cobalt acetates as metallization solutions. The resulting bimetallic micropatterns were tested as working electrodes for non-enzymatic determination of dopamine. The linear range for dopamine detection was found to be 1–500 µM, with sensitivity of 340.4 µA mM− 1 and 615.2 µA mM− 1 and detection limit of 0.36 µM and 0.51 µM for Ni-Cu and Ni-Co sensor, respectively. For the first time, bimetallic Ni-Cu and Ni-Co structures have been obtained from DESs for high-performance dopamine detection with great potential for further application in non-enzymatic sensing and biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data presented in this study are available in the article.

References

  • Binh Nam, V., Giang, T., Lee, T.: Laser digital patterning of finely-structured flexible copper electrodes using copper oxide nanoparticle ink produced by a scalable synthesis method. Appl. Surf. Sci. 570, 151179 (2021). https://doi.org/10.1016/j.apsusc.2021.151179

    Article  Google Scholar 

  • Butt, M.A., Mamonova, D., Petrov, Y., Proklova, A., Kritchenkov, I., Manshina, A., Banzer, P., Leuchs, G.: Hybrid orthorhombic carbon flakes intercalated with bimetallic au-ag nanoclusters: influence of synthesis parameters on optical properties. Nanomaterials. 10, 1–10 (2020). https://doi.org/10.3390/nano10071376

    Article  Google Scholar 

  • Choo, S.S., Kang, E.S., Song, I., Lee, D., Choi, J.W., Kim, T.H.: Electrochemical detection of dopamine using 3D porous graphene oxide/gold nanoparticle composites. Sens. (Switzerland). 17 (2017). https://doi.org/10.3390/s17040861

  • Dindar, C.K., Erkmen, C., Uslu, B.: Electroanalytical methods based on bimetallic nanomaterials for determination of pesticides: past, present, and future. Trends Environ. Anal. Chem. 32 (2021). https://doi.org/10.1016/j.teac.2021.e00145

  • Duobiene, S., Ratautas, K., Trusovas, R., Ragulis, P., Šlekas, G., Simniškis, R., Račiukaitis, G.: Development of Wireless Sensor Network for Environment Monitoring and its implementation using SSAIL Technology. Sensors. 22, 1–17 (2022). https://doi.org/10.3390/s22145343

    Article  Google Scholar 

  • Fiodorov, V., Ratautas, K., Mockus, Z., Trusovas, R., Mikoliūnaitė, L., Račiukaitis, G.: Laser-assisted selective fabrication of copper traces on polymers by Electroplating. Polym. (Basel). 14, 791 (2022). https://doi.org/10.3390/polym14040781

    Article  Google Scholar 

  • Han, Y., Wang, Y., Ma, T., Li, W., Zhang, J., Zhang, M.: Mechanistic understanding of Cu-based bimetallic catalysts. Front. Chem. Sci. Eng. 14, 689–748 (2020). https://doi.org/10.1007/s11705-019-1902-4

    Article  Google Scholar 

  • Hansen, B.B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J.M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B.W., Gurkan, B., Maginn, E.J., Ragauskas, A., Dadmun, M., Zawodzinski, T.A., Baker, G.A., Tuckerman, M.E., Savinell, R.F., Sangoro, J.R.: Deep Eutectic solvents: a review of Fundamentals and Applications. Chem. Rev. 121, 1232–1285 (2021). https://doi.org/10.1021/acs.chemrev.0c00385

    Article  Google Scholar 

  • Huang, Y., Xie, X., Li, M., Xu, M., Long, J.: Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles. Opt. Express. 29, 4453 (2021). https://doi.org/10.1364/oe.416772

    Article  ADS  Google Scholar 

  • Khairullina, E.M., Panov, M.S., Andriianov, V.S., Ratautas, K., Tumkin, I.I., Račiukaitis, G.: High rate fabrication of copper and copper-gold electrodes by laser-induced selective electroless plating for enzyme-free glucose sensing. RSC Adv. 11, 19521–19530 (a). (2021). https://doi.org/10.1039/d1ra01565f

  • Khairullina, E.M., Ratautas, K., Panov, M.S., Andriianov, V.S., Mickus, S., Manshina, A.A., Račiukaitis, G., Tumkin, I.I.: Laser – assisted surface activation for fabrication of flexible non – enzymatic cu – based sensors. Microchim. Acta. 189, 259 (2022). https://doi.org/10.1007/s00604-022-05347-w

    Article  Google Scholar 

  • Khairullina, E.M., Tumkin, I.I., Stupin, D.D., Smikhovskaia, A.V., Mereshchenko, A.S., Lihachev, A.I., Vasin, A.V., Ryazantsev, M.N., Panov, M.S.: Laser-assisted surface modification of ni microstructures with au and pt toward cell biocompatibility and high enzyme-free glucose sensing. ACS Omega. 6, 18099–18109 (2021). (b) https://doi.org/10.1021/acsomega.1c01880

    Article  Google Scholar 

  • El Khatib, K.M., Hameed, A.: Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. Biosens. Bioelectron. 26 (2011). https://doi.org/10.1016/j.bios.2011.01.042

  • Koritsoglou, O., Theodorakos, I., Zacharatos, F., Makrygianni, M., Kariyapperuma, D., Price, R., Cobb, B., Melamed, S., Kabla, A., de la Vega, F., Zergioti, I.: Copper micro-electrode fabrication using laser printing and laser sintering processes for on-chip antennas on flexible integrated circuits. Opt. Mater. Express. 9, 3046 (2019). https://doi.org/10.1364/ome.9.003046

    Article  ADS  Google Scholar 

  • Levshakova, A.S., Khairullina, E.M., Logunov, L.S., Panov, M.S., Mereshchenko, A.S., Sosnovsky, V.B., Gordeychuk, D.I., Yu, A., Tumkin, I.I.: Highly rapid direct laser fabrication of Ni micropatterns for enzyme-free sensing applications using deep eutectic solvent. Mater. Lett. 308, 131085 (2022). https://doi.org/10.1016/j.matlet.2021.131085

    Article  Google Scholar 

  • Liu, J., He, Z., Xue, J., Yang Tan, T.T.: A metal-catalyst free, flexible and free-standing chitosan/vacuum-stripped graphene/polypyrrole three dimensional electrode interface for high performance dopamine sensing. J. Mater. Chem. B. 2 (2014). https://doi.org/10.1039/c3tb21355b

  • Mamonova, D.V., Vasileva, A.A., Petrov, Y.V., Koroleva, A.V., Danilov, D.V., Kolesnikov, I.E., Bikbaeva, G.I., Bachmann, J., Manshina, A.A.: Single step laser-induced deposition of plasmonic au, ag, pt mono-, bi-and tri-metallic nanoparticles. Nanomaterials. 12, 1–20 (2022). https://doi.org/10.3390/nano12010146

    Article  Google Scholar 

  • Mizoshiri, M., Arakane, S., Sakurai, J., Hata, S.: Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles. Appl. Phys. Express. 9 (2016). https://doi.org/10.7567/APEX.9.036701

  • Mizoshiri, M., Yoshidomi, K., Darkhanbaatar, N., Khairullina, E.M.: Effect of Substrates on Femtosecond Laser Pulse-Induced Reductive Sintering of Cobalt Oxide Nanoparticles.1–12(2021)

  • Panov, M.S., Grishankina, A.E., Stupin, D.D., Lihachev, A.I., Mironov, V.N., Strashkov, D.M., Khairullina, E.M., Tumkin, I.I., Ryazantsev, M.N.: In situ laser-induced fabrication of a ruthenium-based microelectrode for non-enzymatic dopamine sensing. Materials (Basel). 13, 1–11 (a). (2020). https://doi.org/10.3390/ma13235385

  • Panov, M.S., Khairullina, E.M., Vshivtcev, F.S., Ryazantsev, M.N.: Laser-Induced Synthesis of Composite Materials Based on Iridium, Gold and Platinum for Non-Enzymatic Glucose Sensing.Materials (Basel).13,1–11(2020)(b)

  • Qin, Y., Alam, A.U., Howlader, M.M.R., Hu, N., Deen, M.J.: Inkjet Printing of a highly loaded Palladium Ink for Integrated, low-cost pH sensors. Adv. Funct. Mater. 26, 4923–4493 (2016). https://doi.org/10.1002/adfm.201600657

    Article  Google Scholar 

  • Rajeev, R., Datta, R., Varghese, A., Sudhakar, Y.N., George, L.: Recent advances in bimetallic based nanostructures: synthesis and electrochemical sensing applications. Microchem J. 163 (2021). https://doi.org/10.1016/j.microc.2020.105910

  • Santos, N.F., Pereira, S.O., Moreira, A., Girão, A.V., Carvalho, A.F., Fernandes, A.J.S., Costa, F.M.: IR and UV Laser-Induced Graphene: application as dopamine Electrochemical Sensors. Adv. Mater. Technol. 6 (2021). https://doi.org/10.1002/admt.202100007

  • Shin, J., Jeong, B., Kim, J., Nam, V.B., Yoon, Y., Jung, J., Hong, S., Lee, H., Eom, H., Yeo, J., Choi, J., Lee, D., Ko, S.H.: Sensitive wearable temperature sensor with Seamless monolithic integration. Adv. Mater. 32, 1905527 (2020). https://doi.org/10.1002/adma.201905527

    Article  Google Scholar 

  • Shishov, A., Gordeychuk, D., Logunov, L., Levshakova, A., Andrusenko, E., Chernyshov, I., Danilova, E., Panov, M., Khairullina, E., Tumkin, I.: Laser-induced deposition of copper from deep eutectic solvents: optimization of chemical and physical parameters. New. J. Chem. 45, 21896–21904 (2021). https://doi.org/10.1039/d1nj04158d

    Article  Google Scholar 

  • Shishov, A., Gordeychuk, D., Logunov, L., Tumkin, I.: High rate laser deposition of conductive copper microstructures from deep eutectic solvents. Chem. Commun. 55, 9626–9628 (2019). https://doi.org/10.1039/c9cc05184h

    Article  Google Scholar 

  • Smikhovskaia, A.V., Andrianov, V.S., Khairullina, E.M., Lebedev, D.V., Ryazantsev, M.N., Panov, M.S., Tumkin, I.I.: In situ laser-induced synthesis of copper–silver microcomposite for enzyme-free D-glucose and L-alanine sensing. Appl. Surf. Sci. 488, 531–536 (2019). https://doi.org/10.1016/j.apsusc.2019.05.061

    Article  ADS  Google Scholar 

  • Smith, E.L., Abbott, A.P., Ryder, K.S.: Deep Eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014). https://doi.org/10.1021/cr300162p

    Article  Google Scholar 

  • Tumkin, I.I., Khairullina, E.M., Panov, M.S., Yoshidomi, K., Mizoshiri, M.: Copper and nickel microsensors produced by selective laser reductive sintering for non-enzymatic glucose detection. Mater. (Basel). 14, 1–11 (2021). https://doi.org/10.3390/ma14102493

    Article  Google Scholar 

  • Wang, W., Xu, G., Cui, X.T., Sheng, G., Luo, X.: Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens. Bioelectron. 58 (2014). https://doi.org/10.1016/j.bios.2014.02.055

  • Wang, X., Zhang, M., Zhang, L., Xu, J., Xiao, X., Zhang, X.: Inkjet-printed flexible sensors: from function materials, manufacture process, and applications perspective. Mater. Today Commun. 31, 103263 (2022). https://doi.org/10.1016/j.mtcomm.2022.103263

    Article  Google Scholar 

  • Windmiller, J.R., Bandodkar, A.J., Valde, G., Parkhomovsky, S., Martinez, A.G., Wang, J.: Electrochemical sensing based on printable temporary transfer tattoos. Chem. Commun. 48, 6794–6796 (2012). https://doi.org/10.1039/c2cc32839a

    Article  Google Scholar 

  • Wu, S., Zhu, Y., Huo, Y., Luo, Y., Zhang, L., Wan, Y., Nan, B., Cao, L., Wang, Z., Li, M., Yang, M., Cheng, H., Lu, Z.: Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 60 (2017). https://doi.org/10.1007/s40843-017-9041-0

  • Yang, T., Chen, H., Jing, C., Luo, S., Li, W., Jiao, K.: Using poly(m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sens. Actuators B Chem. 249 (2017). https://doi.org/10.1016/j.snb.2017.04.078

  • Yang, Y.L., Hsu, C.C., Chang, T.L., Kuo, L.S., Chen, P.H.: Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interference lithography. Appl. Surf. Sci. 256, 3683–3687 (2010). https://doi.org/10.1016/j.apsusc.2010.01.006

    Article  ADS  Google Scholar 

  • Yang, Z., Liu, X., Zheng, X., Zheng, J.: Synthesis of Au@Pt nanoflowers supported on graphene oxide for enhanced electrochemical sensing of dopamine. J. Electroanal. Chem. 817 (2018). https://doi.org/10.1016/j.jelechem.2018.03.062

  • Yoon, Y., Truong, P.L., Lee, D., Ko, S.H.: Metal-oxide nanomaterials synthesis and applications in flexible and wearable sensors. ACS Nanosci. Au. 2, 64–92 (2022). https://doi.org/10.1021/acsnanoscienceau.1c00029

    Article  Google Scholar 

  • Zhang, J., Feng, J., Jia, L., Zhang, H., Zhang, G., Sun, S., Zhou, T.: Laser-Induced Selective metallization on Polymer Substrates using Organocopper for Portable Electronics. ACS Appl. Mater. Interfaces. 11, 13714–13723 (2019). https://doi.org/10.1021/acsami.9b01856

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the SPbSU Nanotechnology Interdisciplinary Centre, Centre for Physical Methods of Surface Investigation, Centre for Optical and Laser Materials Research and Centre for X-ray Diffraction Studies.

Funding

I.I.T., E.M.K., A.S.L. and M.S.P. acknowledge Russian Science Foundation (grant 20-79-10075).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, I.I.T. and A.S.L.; methodology, I.I.T., E.M.K. and A.Yu.S.; formal analysis, E.M.K. and M.S.P.; investigation, A.S.L., E.M.K., R.N. and A.S.M.; data curation, E.M.K. and A.S.M.; writing—original draft preparation, A.S.L., R.N. and I.I.T.; writing—review and editing, I.I.T., E.M.K., A.Yu.S., and M.S.P.; visualization, E.M.K. and A.S.L.; supervision, I.I.T.; project administration, I.I.T.; funding acquisition, I.I.T. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ilya I. Tumkin.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no conflict of interest.

Additional information

This article is part of the Topical Collection on Fundamentals of Laser Assisted Micro- & Nanotechnologies, Guest edited by Vadim Veiko, Tigran Vartanyan, Andrey Belikov and Eugene Avrutin.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levshakova, A.S., Khairullina, E.M., Panov, M.S. et al. Modification of nickel micropatterns for sensor-active applications from deep eutectic solvents. Opt Quant Electron 55, 267 (2023). https://doi.org/10.1007/s11082-022-04403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04403-2

Keywords

Navigation