Skip to main content
Log in

Design of a reversible ALU using a novel coplanar reversible full adder and MF gate in QCA nanotechnology

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Features like ultra-dense structure and ultra-low power consumption of the quantum-dot cellular automata (QCA) have made this nanotechnology a viable alternative to complementary metal–oxide–semiconductor (CMOS) technology. The arithmetic logic unit (ALU) is the fundamental and inseparable part of each processor. This paper presented a new reversible ALU which is made up of three Modified Fredkin (MF) gates and a novel coplanar reversible full adder relying on the HNG gate in QCA nanotechnology. This structure consists of 350 QCA cells are arranged in a 0.411 μm2 area and is implemented using the coplanar clock-zone-based crossover. Also, this layout can execute 20 distinctive arithmetic and logic functions, and its outputs are produced in three clock cycles (12 clock phases). The QCA implementation of the proposed structure is simulated and evaluated by QCADesigner version 2.0.3. Simulation outcomes authenticate that the proposed QCA reversible ALU has a 60.62%, 38.47%, 27.08%, 20%, and 14.28% amelioration in QCA cost, area occupancy, cell count, latency, and quantum cost, respectively, compared to the prior best coplanar structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abdullah-Al-Shafi, M., Bahar, A.N., Habib, M.A., Bhuiyan, M.M.R., Ahmad, F., Ahmad, P.Z., Ahmed, K.: Designing single layer counter in quantum-dot cellular automata with energy dissipation analysis. Ain Shams Eng. J. 9(4), 2641–2648 (2018)

    Google Scholar 

  • Adelnia, Y., Rezai, A.: A novel adder circuit design in quantum-dot cellular automata technology. Int. J. Theor. Phys. 58(1), 184–200 (2019)

    MATH  Google Scholar 

  • Ahmad, F., Ahmed, S., Kakkar, V., Bhat, G.M., Bahar, A.N., Wani, S.: Modular design of ultra-efficient reversible full adder-subtractor in QCA with power dissipation analysis. Int. J. Theor. Phys. 57(9), 2863–2880 (2018)

    MATH  Google Scholar 

  • Ahmadpour, S.-S., Mosleh, M.: New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Commun. Networks 19, 10–25 (2019)

    Google Scholar 

  • Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Physica B 550, 383–392 (2018)

    ADS  Google Scholar 

  • Ahmadpour, S.S., Mosleh, M., Rasouli Heikalabad, S.: Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int. J. Circuit Theory Appl. 47(7), 1037–1056 (2019)

    Google Scholar 

  • Ahmed, S., Baba, M.I., Bhat, S.M., Manzoor, I., Nafees, N., Ko, S.-B.: Design of reversible universal and multifunctional gate-based 1-bit full adder and full subtractor in quantum-dot cellular automata nanocomputing. J. Nanophotonics 14(3), 036002 (2020)

    ADS  Google Scholar 

  • Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10(2), 259–271 (2014)

    Google Scholar 

  • Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Physica B 512, 91–99 (2017)

    ADS  Google Scholar 

  • Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    ADS  Google Scholar 

  • Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2848–2858 (2017)

    MATH  Google Scholar 

  • Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    MathSciNet  MATH  Google Scholar 

  • Bhat, S.M., Ahmed, S.: Design of ultra-efficient reversible gate based 1-bit full adder in QCA with power dissipation analysis. Int. J. Theor. Phys. 58(12), 4042–4063 (2019)

    Google Scholar 

  • Bhuvana, B.P., Kanchana Bhaaskaran, V.S.: Quantum cost optimization of reversible adder/subtractor using a novel reversible gate. In: Innovations in electronics and communication engineering, pp. 111–118. Springer, Singapore (2018)

    Google Scholar 

  • Bilal, B., Ahmed, S., Kakkar, V.: Modular adder designs using optimal reversible and fault tolerant gates in field-coupled QCA nanocomputing. Int. J. Theor. Phys. 57(5), 1356–1375 (2018)

    MathSciNet  MATH  Google Scholar 

  • Chaves, J. F., Silva, D. S., Camargos, V. V., & Neto, O. P. V.: Towards reversible QCA computers: reversible gates and ALU. Paper presented at the 2015 IEEE 6th Latin American symposium on circuits & systems (LASCAS), (2015)

  • Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)

    ADS  MathSciNet  Google Scholar 

  • Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3), 219–253 (1982)

    MathSciNet  MATH  Google Scholar 

  • Goswami, M., Sen, B., Mukherjee, R., Sikdar, B.K.: Design of testable adder in quantum-dot cellular automata with fault secure logic. Microelectron. J. 60, 1–12 (2017)

    Google Scholar 

  • Gupta, A., Malviya, U., & Kapse, V.: Design of speed, energy and power efficient reversible logic based vedic ALU for digital processors. Paper presented at the 2012 Nirma university international conference on engineering (NUiCONE), (2012)

  • Haghparast, M., Navi, K.: A novel reversible BCD adder for nanotechnology based systems. Am. J. Appl. Sci. 5(3), 282–288 (2008)

    Google Scholar 

  • Hashemi, S., Azghadi, M.R., Navi, K.: Design and analysis of efficient QCA reversible adders. J. Supercomput. 75(4), 2106–2125 (2019)

    Google Scholar 

  • Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays 7(2), 177–189 (2012)

    Google Scholar 

  • Heikalabad, S.R.: Non-coplanar counter in quantum-dot cellular automata. Eur. Phys. J. Plus 136(2), 209 (2021). https://doi.org/10.1140/epjp/s13360-021-01198-1

    Article  ADS  Google Scholar 

  • Heikalabad, S.R., Kamrani, H.: Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photonic Netw. Commun. 38(3), 356–377 (2019). https://doi.org/10.1007/s11107-019-00864-w

    Article  Google Scholar 

  • Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 74(5), 1994–2005 (2018)

    Google Scholar 

  • Heikalabad, S.R., Salimzadeh, F., Barughi, Y.Z.: A unique three-layer full adder in quantum-dot cellular automata. Comput. Electr. Eng. 86, 106735 (2020). https://doi.org/10.1016/j.compeleceng.2020.106735

    Article  Google Scholar 

  • Heikalabad, S.R., Ahmadi, R., Salimzadeh, F.: Introducing a full-adder structure for finite field in QCA. ECS J. Solid State Sci. Technol. 10(6), 063006 (2021). https://doi.org/10.1149/2162-8777/ac08d9

    Article  ADS  Google Scholar 

  • Hosseinzadeh, H., Heikalabad, S.R.: A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron. Eng. 192, 52–60 (2018)

    Google Scholar 

  • Kamaraj, A., Marichamy, P.: Design of fault-tolerant reversible floating point division. Informacije MIDEM 48(3), 161–172 (2018)

    Google Scholar 

  • Kamaraj, A., Marichamy, P.: Design of integrated reversible fault-tolerant arithmetic and logic unit. Microprocess. Microsyst. 69, 16–23 (2019)

    Google Scholar 

  • Kamrani, H., Heikalabad, S.R.: Design and implementation of multiplication algorithm in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 77(6), 5779–5805 (2021). https://doi.org/10.1007/s11227-020-03478-6

    Article  Google Scholar 

  • Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. nature 409(6816), 46–52 (2001)

    ADS  Google Scholar 

  • Kumar, P., Singh, S.: Optimization of the area efficiency and robustness of a QCA-based reversible full adder. J. Comput. Electron. 18(4), 1478–1489 (2019)

    Google Scholar 

  • Kunalan, D., Cheong, C. L., Chau, C. F., & Ghazali, A. B.: Design of a 4-bit adder using reversible logic in quantum-dot cellular automata (QCA). Paper presented at the 2014 IEEE international conference on semiconductor electronics (ICSE2014) (2014)

  • Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016)

    ADS  Google Scholar 

  • Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    MathSciNet  MATH  Google Scholar 

  • Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993a)

    ADS  Google Scholar 

  • Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993b)

    ADS  Google Scholar 

  • Ma, X.: Physical/biochemical inspired computing models for reliable nano-technology systems: Citeseer. (2008)

    Google Scholar 

  • Maharaj, J., Muthurathinam, S.: Effective RCA design using quantum dot cellular automata. Microprocess. Microsyst. 73, 102964 (2020)

    Google Scholar 

  • Mano, M. M.: Computer system architecture (Vol. 3): Prentice Hall Englewood Cliffs (1993)

  • Miller, D. M., Wille, R., & Drechsler, R.: Reducing reversible circuit cost by adding lines. Paper presented at the 2010 40th IEEE international symposium on multiple-valued logic (2010)

  • Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quantum Inf. Process. 8(4), 297–318 (2009)

    MathSciNet  MATH  Google Scholar 

  • Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13(9), 2127–2147 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • Mosleh, M.: A novel full adder/subtractor in quantum-dot cellular automata. Int. J. Theor. Phys. 58(1), 221–246 (2019)

    MathSciNet  MATH  Google Scholar 

  • Naghibzadeh, A., Houshmand, M.: Design and simulation of a reversible ALU by using QCA cells with the aim of improving evaluation parameters. J. Comput. Electron. 16(3), 883–895 (2017)

    Google Scholar 

  • Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010a)

    Google Scholar 

  • Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010b)

    Google Scholar 

  • Norouzi, A., Heikalabad, S.R.: Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photonic Netw. Commun. 38(2), 231–243 (2019). https://doi.org/10.1007/s11107-019-00850-2

    Article  Google Scholar 

  • Norouzi, M., Heikalabad, S.R., Salimzadeh, F.: A reversible ALU using HNG and Ferdkin gates in QCA nanotechnology. Int. J. Circuit Theory Appl. 48(8), 1291–1303 (2020)

    Google Scholar 

  • Oskouei, S.M., Ghaffari, A.: Designing a new reversible ALU by QCA for reducing occupation area. J. Supercomput. 75(8), 5118–5144 (2019)

    Google Scholar 

  • Parhami, B.: Fault-tolerant reversible circuits. Paper presented at the 2006 fortieth asilomar conference on signals, systems and computers (2006)

  • Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32(6), 3266 (1985)

    ADS  MathSciNet  Google Scholar 

  • Perri, S., Corsonello, P., Cocorullo, G.: Area-delay efficient binary adders in QCA. IEEE Trans. Integr. (VLSI) Syst. 22(5), 1174–1179 (2013)

    Google Scholar 

  • Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Google Scholar 

  • Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014)

    Google Scholar 

  • Safoev, N., Jeon, J.-C.: A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron. Eng. 222, 111197 (2020)

    Google Scholar 

  • Salimzadeh, F., Heikalabad, S.R.: A full adder structure with a unique XNOR gate based on Coulomb interaction in QCA nanotechnology. Opt. Quantum Electron. 53(8), 479 (2021). https://doi.org/10.1007/s11082-021-03127-z

    Article  Google Scholar 

  • Salimzadeh, F., Heikalabad, S.R., Gharehchopogh, F.S.: Design of a reversible structure for memory in quantum-dot cellular automata. Int. J. Circuit Theory Appl. 48(12), 2257–2265 (2020). https://doi.org/10.1002/cta.2807

    Article  Google Scholar 

  • Salimzadeh, F., Safarpoor, E., Heikalabad, S.R.: Designing and implementing a fault-tolerant priority encoder in QCA nanotechnology. ECS J. Solid State Sci. Technol. 10(6), 063004 (2021). https://doi.org/10.1149/2162-8777/ac0118

    Article  ADS  Google Scholar 

  • Sasamal, T.N., Singh, A.K., Mohan, A.: Efficient design of reversible alu in quantum-dot cellular automata. Optik 127(15), 6172–6182 (2016)

    ADS  Google Scholar 

  • Sasamal, T.N., Singh, A.K., Mohan, A.: Design of cost-efficient qca reversible circuits via clock-zone-based crossover. Int. J. Theor. Phys. 57(10), 3127–3140 (2018a)

    Google Scholar 

  • Sasamal, T.N., Mohan, A., Singh, A.K.: Efficient design of reversible logic ALU using coplanar quantum-dot cellular automata. J. Circuits, Syst. Comput. 27(02), 1850021 (2018b)

    Google Scholar 

  • Sasamal, T.N., Singh, A.K., Mohan, A.: An efficient design of quantum-dot cellular automata based 5-input majority gate with power analysis. Microprocess. Microsyst. 59, 103–117 (2018c)

    Google Scholar 

  • Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014)

    Google Scholar 

  • Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik 158, 243–256 (2018)

    ADS  MATH  Google Scholar 

  • Singh, S., Choudhary, A., Jain, M.K.: A brief overview of reversible logic gate and reversible circuits. Int J Electron Eng 11(2), 86–104 (2019)

    Google Scholar 

  • Singh, P., Majumder, A., Chowdhury, B., Mondal, A., Shekhawat, T.: Reducing delay and quantum cost in the novel design of reversible memory elements. Proced. Comput. Sci. 57, 189–198 (2015)

    Google Scholar 

  • Taherkhani, E., Moaiyeri, M.H., Angizi, S.: Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Optik 142, 557–563 (2017)

    ADS  Google Scholar 

  • Toffoli, T.: Reversible computing. Paper presented at the international colloquium on automata, languages, and programming (1980)

  • Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    ADS  Google Scholar 

  • Tougaw, P.D., Lent, C.S., Porod, W.: Bistable saturation in coupled quantum-dot cells. J. Appl. Phys. 74(5), 3558–3566 (1993)

    ADS  Google Scholar 

  • Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    ADS  Google Scholar 

  • Wille, R., Soeken, M., Miller, D.M., Drechsler, R.: Trading off circuit lines and gate costs in the synthesis of reversible logic. Integration 47(2), 284–294 (2014)

    Google Scholar 

  • Zhang, Y., Xie, G., Sun, M., Lv, H.: An efficient module for full adders in quantum-dot cellular automata. Int. J. Theor. Phys. 57(10), 3005–3025 (2018)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rasouli Heikalabad.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliabadian, R., Golsorkhtabaramiri, M., Heikalabad, S.R. et al. Design of a reversible ALU using a novel coplanar reversible full adder and MF gate in QCA nanotechnology. Opt Quant Electron 55, 191 (2023). https://doi.org/10.1007/s11082-022-04382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04382-4

Keywords

Navigation