Skip to main content
Log in

Supercontinuum generation in ultra-flattened near-zero dispersion PCF with C7H8 infiltration

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A novel design study of ultra-flattened near-zero dispersion PCF with toluene (C7H8) infiltration is proposed. The near-zero ultra-flattened dispersion is achieved by appropriately reducing the diameter of the first ring air-holes in the cladding and increasing the distance from the core to these air-holes. An ultra-flattened chromatic dispersion as small as 0.947 ps/(nm.km) has been obtained over a broadband of 500 nm with a high nonlinear coefficient and very low attenuation of the fundamental modes (about 10−14 dB/m at the pump wavelength). Two optimized PCFs have been selected for broad-spectrum supercontinuum (SC) generation with low peak power. The first fiber with a lattice constant (Λ) 0.9 μm and filling factor (d1/Λ) 0.45 has an anomalous dispersion regime. The SC spectrum broadens from 800 to 2800 nm with a full width at half maximum (FWHM) of 1897.3 nm generated by pump pulses centered at a wavelength of 1.55 μm, with input pulse energy of 0.05 nJ and 90 fs duration, corresponding to the peak power of about 0.556 kW. The second proposed fiber (Λ = 1.0 μm, d1/Λ = 0.5) enables SC generation in an all-normal dispersion regime with an FWHM of 1163.7 nm at the same pump pulses as the first fiber with input pulse energy of 0.015 nJ (the peak power of 0.375 kW) in a 5 dB dynamic range. These fibers can be a new class for the next generation of broadband laser sources with a low peak power as cost-effective alternatives to glass core fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data availability statement.

References

  • Agrawal, G.: Highly nonlinear fibers. In: Nonlinear Fiber Optics, pp. 457–496. Elsevier (2013). https://doi.org/10.1016/B978-0-12-397023-7.00011-5

    Chapter  Google Scholar 

  • Ahmad, R., Komanec, M., Zvanovec, S.: Ultra-wideband mid-infrared supercontinuum generation in liquid-filled circular photonic crystal fiber. J. Nanophoton. 14(2), 026016 (2020)

    ADS  Google Scholar 

  • Alam, Md.Z., Tahmid, Md.I., Mouna, S.T., Islam, Md.A., Alam, M.S.: Design of a novel star type photonic crystal fiber for mid-infrared supercontinuum generation. Opt. Commun. 500, 127322 (2021)

    Google Scholar 

  • Begum, F., Namihira, Y., Kinjo, T., Kaijage, S.: Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis. Opt. Commun. 284(4), 965–970 (2011)

    ADS  Google Scholar 

  • Dashtban, Z., Salehi, M.R., Abiri, E.: Supercontinuum generation in near- and mid-infrared spectral region using highly nonlinear silicon-core photonic crystal fiber for sensing applications. Photon. Nanostruct. Fundam. Applic. 46, 100942 (2021)

    Google Scholar 

  • Dinh, Q.H., Pniewski, J., Van, H.L., Ramaniuk, A., Long, V.C., Borzycki, K., Xuan, K.D., Klimczak, M., Buczyński, R.: Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses. Appl. Opt. 57(14), 3738–3746 (2018)

    ADS  Google Scholar 

  • Dudley, J.M.: Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 27(13), 1180–1182 (2002)

    ADS  Google Scholar 

  • Dudley, J.M., Taylor, J.R.: Supercontinuum Generation in Optical Fibers. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  • Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Modern Phys. 78(4), 1135–1184 (2006)

    ADS  Google Scholar 

  • Fang, Y., Bao, C., Wang, Z., Liu, B., Zhang, L., Han, X., He, Y., Huang, H., Ren, Y., Pan, Z., Yue, Y.: Three-octave supercontinuum generation using SiO2 cladded Si3N4 slot waveguide with all-normal dispersion. J. Lightwave Technol. 38(13), 3431–3438 (2020)

    ADS  Google Scholar 

  • Fanjoux, G., Margueron, S., Beugnot, J.C., Sylvestre, T.: Supercontinuum generation by stimulated Raman-Kerr scattering in a liquid-core optical fiber. J. Opt. Soc. Am. B 34(8), 1677–1683 (2017)

    ADS  Google Scholar 

  • Ferreira, M.F.S.: Introduction. In: Ferreira, M.F.S. (ed.) Optical Signal Processing in Highly Nonlinear Fibers, pp. 1–4. CRC Press, First edition. | Boca Raton, FL : CRC Press, 2020. (2020). https://doi.org/10.1201/9780429262111-1

    Chapter  Google Scholar 

  • Finot, C., Kibler, B., Provost, L., Wabnitz, S.: Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25(11), 1938–1337 (2008)

    ADS  Google Scholar 

  • Gallazzi, F., Cáceres, I., Monroy, L., Nuño, J., Pulido, C., Corredera, P., Naranjo, F.B., Herráez, M.G., Castañón, J.D.A.: Ultralong ring laser supercontinuum sources using standard telecommunication fibre. Opt. Laser Technol. 147, 107632 (2022)

    Google Scholar 

  • Hartl, I., Li, X.D., Chudoba, C., Ghanta, R.K., Ko, T.H., Fujimoto, J.G., Ranka, J.K., Windeler, R.S.: Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt. Lett. 26(9), 608–610 (2001)

    ADS  Google Scholar 

  • Hoang, V.T., Kasztelanic, R., Anuszkiewicz, A., Stepniewski, G., Filipkowski, A., Ertman, S., Pysz, D., Wolinski, T., Xuan, K.D., Klimczak, M., Buczynski, R.: All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene. Opt. Mater. Expr. 8(11), 3568–3582 (2018)

    ADS  Google Scholar 

  • Hoang, V.T., Kasztelanic, R., Filipkowski, A., Stępniewski, G., Pysz, D., Klimczak, M., Ertman, S., Long, V.C., Woliński, T.R., Trippenbach, M., Xuan, K.D., Śmietana, M., Buczyński, R.: Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride. Opt. Mater. Expr. 9(5), 2264–2278 (2019)

    ADS  Google Scholar 

  • Hoang, V.T., Kasztelanic, R., Stępniewski, G., Xuan, K.D., Long, V.C., Trippenbach, M., Klimczak, M., Buczyński, R., Pniewski, J.: Femtosecond supercontinuum generation around 1560 nm in hollow-core photonic crystal fibers filled with carbon tetrachloride. Appl. Opt. 59(12), 3720–3725 (2020)

    ADS  Google Scholar 

  • Hsu, J.M.: Tailoring of nearly zero flattened dispersion photonic crystal fibers. Opt. Commun. 361, 104–109 (2016)

    ADS  Google Scholar 

  • Huang, C., Liao, M., Bi, W., Li, X., Hu, L., Zhang, L., Wang, L., Qin, G., Xue, T., Chen, D., Gao, W.: Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion. Photon. Res. 6(6), 601–608 (2018a)

    Google Scholar 

  • Huang, T., Huang, P., Cheng, Z., Liao, J., Wu, X., Pan, J.: Design and analysis of a hexagonal tellurite photonic crystal fiber with broadband ultra-flattened dispersion in mid-IR. Optik 167, 144–149 (2018b)

    ADS  Google Scholar 

  • Huang, T., Wei, Q., Wu, Z., Wu, X., Huang, P., Cheng, Z., Shum, P.P.: Ultra-flattened normal dispersion fiber for supercontinuum and dissipative soliton resonance generation at 2 μm. IEEE Photon. J. 11(3), 7101511 (2019)

    Google Scholar 

  • Huang, Y., Yang, H., Zhao, S., Mao, Y., Chen, S.: Design of photonic crystal fibers with flat dispersion and three zero dispersion wavelengths for coherent supercontinuum generation in both normal and anomalous regions. Result. Phys. 23, 104033 (2021)

    Google Scholar 

  • Islam, Md.S., Sultana, J., Dinovitser, A., Brian, W.HNg., Abbott, D.A.: Novel zeonex basedoligoporous-core photonic crystal fiber for polarization preserving terahertz applications. Opt. Commun. 413, 242–248 (2018)

    ADS  Google Scholar 

  • Jones, D.J., Diddams, S.A., Ranka, J.K., Stentz, A., Windeler, R.S., Hall, J.L., Cundiff, S.T.: Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Sci. 288(5466), 635–639 (2000)

    ADS  Google Scholar 

  • Kaminski, C.F., Watt, R.S., Elder, A.D., Frank, J.H., Hult, J.: Supercontinuum radiation for applications in chemical sensing and microscopy. Appl. Phys. B 92(3), 367–378 (2008)

    ADS  Google Scholar 

  • Kato, T., Suetsugu, Y., Takagi, M., Sasaoka, E., Nishimura, M.: Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light. Opt. Lett. 20(9), 988–990 (1995)

    ADS  Google Scholar 

  • Kedenburg, S., Vieweg, M., Gissibl, T., Giessen, H.: Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Expr. 2(11), 1588–1611 (2012)

    ADS  Google Scholar 

  • Knight, J.C.: Photonic. Cryst. Fibre. Nat. 424(6950), 847–851 (2003)

    Google Scholar 

  • Kumar, P., Kumar, V., Roy, J.S.: Design of quad core photonic crystal fibers with flattened zero dispersion. Int. J. Electron. Commun. 98, 265–272 (2019)

    Google Scholar 

  • Kumar, P., Fiaboe, K.F., Roy, J.S.: Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation. ETRI J. 42(2), 282–291 (2020)

    Google Scholar 

  • Le, H.V., Cao, V.L., Nguyen, H.T., Nguyen, A.M., Buczyński, R., Kasztelanic, R.: Application of ethanol infiltration for ultra-flattened normal dispersion in fused silica photonic crystal fibers. Laser Phys. 28, 115106 (2018)

    ADS  Google Scholar 

  • Lee, Y.S., Lee, C.G., Bahloul, F., Kim, S., Oh, K.: Simultaneously achieving a large negative dispersion and a high birefringence over Er and Tm dual gain bands in a square lattice photonic crystal fiber. J. Lightwave Technol. 37(4), 1254–1263 (2019)

    ADS  Google Scholar 

  • Lemière, A., Maldonado, A., Désévédavy, F., Kibler, B., Mathey, P., Gadret, G., Jules, J.C., Hoa, N.P.T., Suzuki, T., Ohishi, Y., Smektala, F.: Towards absorption spectroscopy by means of mid-infrared supercontinuum generation in a step index tellurite fiber. Laser Phys. 31(2), 025702–025708 (2021)

    ADS  Google Scholar 

  • Ling, W.J., Li, K., Zuo, Y.Y.: Supercontinuum generation in nonperiodic photonic crystal fibers and its application in frequency metrology. Appl. Mechan. Mater. 302, 194–199 (2013)

    ADS  Google Scholar 

  • Maji, P.S., Chaudhuri, P.R.: Supercontinuum generation in ultra-flat near zero dispersion PCF with selective liquid infiltration. Optik 125(20), 5986–5992 (2014)

    ADS  Google Scholar 

  • Medjouri, A., Simohamed, L.M., Ziane, O., Boudrioua, A., Becer, Z.: Design of a circular photonic crystal fiber with flattened chromatic dispersion using a defected core and selectively reduced air holes: application to supercontinuum generation at 1.55 μm. Photon. Nanostruct. Fundam. App. 16, 43–50 (2015)

    Google Scholar 

  • Medjouri, A., Meraghni, E.B., Hathroubi, H., Abed, D., Simohamed, L.M., Ziane, O.: Design of ZBLAN photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion for supercontinuum generation. Optik 135, 417–425 (2017)

    ADS  Google Scholar 

  • Medvedkov, O.I., Vasiliev, S.A., Gnusin, P.I., Dianov, E.M.: Photosensitivity of optical fibers with extremely high germanium concentration. Opt. Mater. Expr 2(11), 1478–1489 (2012)

    ADS  Google Scholar 

  • Mei, C., Wu, Y., Qiu, S., Yuan, J., Zhou, X., Long, K.: Design of dual-core photonic crystal fiber for temperature sensor based on surface plasmon resonance effect. Opt. Commun. 508, 127838 (2022)

    Google Scholar 

  • Moutzouris, K., Papamichael, M., Betsis, S.C., Stavrakas, I., Hloupis, G., Triantis, D.: Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B 116, 617–622 (2014)

    ADS  Google Scholar 

  • Pires, H., Baudisch, M., Sanchez, D., Hemmer, M., Biegert, J.: Ultrashort pulse generation in the mid-IR. Prog. Quantum Electron. 43, 1–30 (2015)

    ADS  Google Scholar 

  • Raei, R., Heidari, M.E., Saghaei, H.: Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions. J. Opt. Soc. Am. B 35(2), 323–330 (2018)

    ADS  Google Scholar 

  • Roy, S., Ghosh, D., Bhadra, S.K., Agrawal, G.P.: Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation. Opt. Commun. 283(15), 3081–3088 (2010)

    ADS  Google Scholar 

  • Saitoh, K., Koshiba, M., Hasegawa, T., Sasaoka, E.: Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Expr 11(8), 843–852 (2003)

    ADS  Google Scholar 

  • Saitoh, K., Florous, N.J., Koshiba, M.: Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach. Opt. Lett. 31(1), 26–28 (2006)

    ADS  Google Scholar 

  • Shang, H., Sun, D., Zhang, M., Song, J., Yang, Z., Liu, D., Zeng, S., Wan, L., Zhang, B., Wang, Z., Li, Z., Liu, Y.G.: On-chip detector based on supercontinuum generation in chalcogenide waveguide. J. Lightwave Technol. 39(12), 3890–3895 (2021)

    ADS  Google Scholar 

  • Sharafali, A., Ali, A.K.S., Lakshmanan, M.: Modulation instability induced supercontinuum generation in liquid core suspended photonic crystal fiber with cubic-quintic nonlinearities. Phys. Lett. A 399, 127290 (2021)

    Google Scholar 

  • Smirnov, S.V., Ania-Castanon, J.D., Ellingham, T.J., Kobtsev, S.M., Kukarin, S., Turitsyn, S.K.: Optical spectral broadening and supercontinuum generation in telecom applications. Opt. Fiber. Technol. 12(2), 122–147 (2006)

    ADS  Google Scholar 

  • Sobon, G., Sotor, J., Martynkien, T., Abramski, K.M.: Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser. Opt. Expr. 24, 6156–6161 (2016)

    ADS  Google Scholar 

  • Stępniewski, G., Pniewski, J., Pysz, D., Cimek, J., Stępień, R., Klimczak, M., Buczynski, R.: Development of dispersion-optimized photonic crystal fibers based on heavy metal oxide glasses for broadband infrared supercontinuum generation with fiber lasers. Sens. 18(12), 4127 (2018)

    ADS  Google Scholar 

  • Sultana, J., Islam, Md.S., Islam, M.R., Abbott, D.: High numerical aperture, highly birefringent novel photonic crystal fiber for medical imaging applications. Electron. Lett. 54(2), 61–62 (2018)

    ADS  Google Scholar 

  • Tan, C.Z.: Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy. J. Non-Cryst. Solid. 223(1–2), 158–163 (1998)

    ADS  Google Scholar 

  • Thévenaz, L.: Advanced Fiber Optics Concept and Technology, 1st edn. EPFL Press, New York (2011)

    Google Scholar 

  • Thi, T.N., Trong, D.H., Tran, B.T.L., Van, T.D., Van, L.C.: Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation. J. Opt. 51(3), 678–688 (2022)

    Google Scholar 

  • Tran, B.T.L., Thi, T.N., Minh, N.V.T., Canh, T.L., Van, M.L., Long, V.C., Xuan, K.D., Van, L.C.: Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol. Photon. Lett. Poland 12(4), 106–108 (2020)

    Google Scholar 

  • Van, L.C., Anuszkiewicz, A., Ramaniuk, A., Kasztelanic, R., Xuan, K.D., Long, V.C., Trippenbach, M., Buczyński, R.: Supercontinuum generation in photonic crystal fibers with core filled with toluene. J. Opt. 19, 125604–125609 (2017)

    ADS  Google Scholar 

  • Van, L.C., Hoang, V.T., Long, V.C., Borzycki, K., Xuan, K.D., Quoc, V.T., Trippenbach, M., Buczyński, R., Pniewski, J.: Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Phys. 29(7), 075107 (2019)

    ADS  Google Scholar 

  • Van, L.C., Hoang, V.T., Long, V.C., Borzycki, K., Xuan, K.D., Quoc, V.T., Trippenbach, M., Buczyński, R., Pniewski, J.: Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Phys. 30(3), 035105 (2020)

    ADS  Google Scholar 

  • Van, H.L., Hoang, V.T., Canh, T.L., Dinh, Q.H., Nguyen, H.T., Minh, N.V.T., Klimczak, M., Buczynski, R., Kasztelanic, R.: Silica-based photonic crystal fiber infiltrated with 1,2-dibromoethane for supercontinuum generation. Appl. Opt. 60(24), 7268–7278 (2021)

    ADS  Google Scholar 

  • Van, L.C., Thi, T.N., Tran, B.T.L., Trong, D.H., Minh, N.V.T., Le, H.V., Hoang, V.T.: Multi-octave supercontinuum generation in As2Se3 chalcogenide photonic crystal fiber. Photon. Nanostruct. Fundam. Appl. 48, 100986 (2022)

    Google Scholar 

  • Vieweg, M., Gissibl, T., Pricking, S., Kuhlmey, B.T., Wu, D.C., Eggleton, B.J., Giessen, H.: Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. Opt. Expr. 18, 25232–25240 (2010)

    ADS  Google Scholar 

  • Yang, X., Lu, Y., Liu, B., Yao, J.: Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber. IEEE Sens. J. 17(12), 6948–6952 (2017)

    ADS  Google Scholar 

  • Yoshii, K., Nomura, J., Taguchi, K., Hisa, i Y., Hong, F.L.: Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation. Phys. Rev. Appl. 11, 054031 (2019)

    ADS  Google Scholar 

  • Zeleny, R., Lucki, M.: Nearly zero dispersion-flattened photonic crystal fiber with fluorine-doped threefold symmetry core. Opt. Eng. 52(4), 045003 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03-2020.03 and Vietnam’s Ministry of Education and Training (B2021-DHH-08).

Funding

Vietnam National Foundation for Science and Technology Development (NAFOSTED),103.03-2020.03,Lanh Chu Van,Vietnam’s Ministry of Education and Training,B2021-DHH-08,Thuy Nguyen Thi

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thuy Nguyen Thi or Lanh Chu Van.

Ethics declarations

Conflict of interest

We declare that the authors do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thi, T.N., Trong, D.H. & Van, L.C. Supercontinuum generation in ultra-flattened near-zero dispersion PCF with C7H8 infiltration. Opt Quant Electron 55, 93 (2023). https://doi.org/10.1007/s11082-022-04351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04351-x

Keywords

Navigation