Skip to main content
Log in

Numerical modelling and performance evaluation of SnS based heterojunction solar cell with p+-SnS BSF layer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this research article, the performance of the solar cell having the structure (Ag/ZnO:Al/CdS/SnS/p+-SnS/Mo/Glass) is investigated in detail using SCAPS-1D software. This work was carried out to study the performance parameters of SnS based solar cell with an p+-SnS layer as the back surface field (BSF). The efficiency (η) of the solar cell increased to 7.11% with the inclusion of the p+-SnS BSF layer and after all the optimizations of the various parameters were completed. The open circuit voltage (Voc) and the short circuit current (Jsc) of the designed solar cell enhanced up to 359 mV and 27 mA/cm2 after adding p+-SnS BSF layer. The performance of a heterojunction solar cell is reported to be influenced by a number of parameters, including the thickness of the buffer, absorber, and BSF layers, carrier concentration, defect density, and the device's series and shunt resistance. Also depositing a p+-SnS layer is quite simple, economic and the lattice mismatch is less with the SnS layer. All these findings reveal that p+-SnS layer could be a promising BSF layer to enhance the performance of SnS based heterojunction solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The authors declare that the data supporting the findings of some of this study are available in its supplementary information files.

References

  • Adewoyin, A.D., Olopade, M.A., Chendo, M.: Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik 133, 122–131 (2017). https://doi.org/10.1016/j.ijleo.2017.01.008

    Article  ADS  Google Scholar 

  • Ahmet, I.Y., Guc, M., Sánchez, Y., Neuschitzer, M., Izquierdo-Roca, V., Saucedo, E., Johnson, A.L.: Evaluation of AA-CVD deposited phase pure polymorphs of SnS for thin films solar cells. RSC Adv. 9(26), 14899–14909 (2019)

    Article  ADS  Google Scholar 

  • Al Ahmed, S.R., Sunny, A., Rahman, S.: Performance enhancement of Sb2Se3 solar cell using a back surface field layer: a numerical simulation approach. Sol. Energy Mater. Sol. Cells 221, 110919 (2021)

    Article  Google Scholar 

  • Almosni, S., Delamarre, A., Jehl, Z., Suchet, D., Cojocaru, L., Giteau, M., Behaghel, B., Julian, A., Ibrahim, C., Tatry, L., Wang, H., Kubo, T., Uchida, S., Segawa, H., Miyashita, N., Tamaki, R., Shoji, Y., Yoshida, K., Ahsan, N., Watanabe, K., Inoue, T., Sugiyama, M., Nakano, Y., Hamamura, T., Toupance, T., Olivier, C., Chambon, S., Vignau, L., Geffroy, C., Cloutet, E., Hadziioannou, G., Cavassilas, N., Rale, P., Cattoni, A., Collin, S., Gibelli, F., Paire, M., Lombez, L., Aureau, D., Bouttemy, M., Etcheberry, A., Okada, Y., Guillemoles, J.-F.: Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Sci. Technol. Adv. Mater. 19(1), 336–369 (2018). https://doi.org/10.1080/14686996.2018.1433439

    Article  Google Scholar 

  • Atanu Bag, R., Radhakrishnan, R.N., Jeyakumar, R.: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Sol. Energy 196, 177–182 (2020)

    Article  ADS  Google Scholar 

  • Atowar Rahman, M.: Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL. Sol. Energy 215, 64–76 (2021). https://doi.org/10.1016/j.solener.2020.12.020

    Article  ADS  Google Scholar 

  • Bal, S.S., Basak, A., Singh, U.P.: Numerical modeling and performance analysis of Sb-based tandem solar cell structure using SCAPS – 1D. Opt. Mater. 127, 112282 (2022)

    Article  Google Scholar 

  • Basak, A., Singh, U.P.: Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D. Sol. Energy Mater. Sol. Cells 230, 111184 (2021)

    Article  Google Scholar 

  • Benami, A.: Effect of CZTS parameters on photovoltaic solar cell from numerical simulation. J. Energy Power Eng. 13, 32–36 (2019)

    Google Scholar 

  • Biplab, S.R.I., Ali, M.H., Moon, M.M.A., Pervez, M.F., Rahman, M.F., Hossain, J.: Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. J. Comput. Electron. 19, 342–352 (2020). https://doi.org/10.1007/s10825-019-01433-0

    Article  Google Scholar 

  • Bouarissa, A., Gueddim, A., Bouarissa, N., Maghraoui-Meherezi, H.: Modeling of ZnO/MoS2/CZTS photovoltaic solar cell through window buffer and absorber layers optimization. Mater. Sci. Eng. B 263, 114816 (2021)

    Article  Google Scholar 

  • Boubakri, A., Jouidri, A., Koumya, Y., Rajira, A., Almaggoussi, A., Abounadi, A.: An output characteristics simulation of SnS based solar cells, Materials Today: Proceedings, 2021, ISSN 2214–7853, https://doi.org/10.1016/j.matpr.2021.07.428.

  • Chaki, S.H., Chaudhary, M.D., Deshpande, M.P.: SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques. J. Semicond. 37(5), 053001 (2016)

    Article  ADS  Google Scholar 

  • Cheraghizade, M., Jamali-Sheini, F.: Photovoltaic behavior of SnS solar cells under temperature variations. Optik 254, 168635 (2022)

    Article  ADS  Google Scholar 

  • Cho, J.Y., Sinha, S., Gang, M.G., Heo, J.: Controlled thickness of a chemical-bath-deposited CdS buffer layer for a SnS thin film solar cell with more than 3% efficiency. J. Alloy. Compd. 796, 160–166 (2019)

    Article  Google Scholar 

  • Cui, K., Anisimov, A.S., Chiba, T., Fujii, S., Kataura, H., Nasibulin, A.G., Maruyama, S.: Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J. Mater. Chem. A 2(29), 11311–11318 (2014)

    Article  Google Scholar 

  • Dai Nguyen, T., Hung, N.M., Arepalli, V.K., Kim, J., Raj, M., Nguyen, T.T.O.: Synthesis of Ag-embedded SnS films by the RF method for photovoltaic applications. Surfaces and Interfaces 25, 101151 (2021)

    Article  Google Scholar 

  • Dalapati, G.K., Zhuk, S., Masudy-Panah, S., Kushwaha, A., Seng, H.L., Chellappan, V., Suresh, V., Su, Z., Batabyal, S.K., Tan, C.C., Guchhait, A.: Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells. Sci. Rep. 7(1), 1–12 (2017)

    Article  Google Scholar 

  • Dong, Y., Cai, G., Zhang, Q., Wang, H., Sun, Z., Wang, H., Wang, Y., Xue, S.: Solution-phase deposition of SnS thin films via thermo-reduction of SnS 2. Chem. Commun. 54(16), 1992–1995 (2018)

    Article  Google Scholar 

  • El-Bashar, R., Hussein, M., Hegazy, S.F., et al.: Electrical performance of efficient quad-crescent-shaped Si nanowire solar cell. Sci. Rep. 12, 48 (2022)

    Article  ADS  Google Scholar 

  • Garain, R., Basak, A., Singh, U.P.: Study of thickness and temperature dependence on the performance of SnS based solar cell by SCAPS-1D. Mater. Today: Proceed. 39, 1833–1837 (2021)

    Google Scholar 

  • Garmim, T., Chahib, S., Soussi, L., Mghaiouini, R., El Jouad, Z., Louardi, A., Karzazi, O., El Jouad, M., Hlil, E.K., Hartiti, B., Monkade, M.: Optical, electrical and electronic properties of SnS thin films deposited by sol gel spin coating technique for photovoltaic applications. J. Mater. Sci.: Mater. Electron. 31(23), 20730–20741 (2020)

    Google Scholar 

  • Gedi, S., Minnam Reddy, V.R., Kotte, T.R.R., Park, C., Kim, W.K.: Fundamental aspects and comprehensive review on physical properties of chemically grown tin-based binary sulfides. Nanomaterials 11(8), 1955 (2021)

    Article  Google Scholar 

  • Gohri, S., Madan, J., Pandey, R., et al.: Performance analysis for SnS- and Sn2S3-based back surface field CZTSSe solar cell: a simulation study. J. Electron. Mater. 50, 6318–6328 (2021)

    Article  ADS  Google Scholar 

  • González-Flores, V.E., Mohan, R.N., Ballinas-Morales, R., Nair, M.T.S., Nair, P.K.: Thin film solar cells of chemically deposited SnS of cubic and orthorhombic structures. Thin Solid Films 672, 62–65 (2019)

    Article  ADS  Google Scholar 

  • Ho, T.-T., Jokar, E., Quadir, S., Chen, R.-S., Liu, F.-C., Chen, C.-Y., Chen, K.-H., Chen, L.-C.: Enhancing the photovoltaic properties of SnS-Based solar cells by crystallographic orientation engineering. Sol. Energy Mater. Sol. Cells 236, 111499 (2022)

    Article  Google Scholar 

  • Islam, M.S., Islam, N., Anis-Uz-Zaman, M., Baul, A., Mostafa, S.M.G. and Sreelekha, M.: Investigation for optimal structure of CdS/SnS solar cell from numerical analysis. In: 2019 International Conference on Intelligent Sustainable Systems (ICISS) (pp. 447–450). IEEE. 2019

  • Kang, J.Y., Kwon, S.M., Yang, S.H., Cha, J.H., Bae, J.A., Jeon, C.W.: Control of the microstructure of SnS photovoltaic absorber using a seed layer and its impact on the solar cell performance. J. Alloy. Compd. 711, 294–299 (2017)

    Article  Google Scholar 

  • Kc, D., Shah, D.K., Akhtar, M.S., Park, M., Kim, C.Y., Yang, O., Pant, B.: Numerical investigation of graphene as a back surface field layer on the performance of cadmium telluride solar cell. Molecules 26(11), 3275 (2021)

    Article  Google Scholar 

  • Komilov, A.G.: Influence of CdS buffer layer thickness on the photovoltaic parameters of solar cells. Appl. Sol. Energy 54, 308–309 (2018)

    Article  Google Scholar 

  • Kuddus, A., Mostaque, S.K., Hossain, J.: Simulating the performance of a high-efficiency SnS-based dual-heterojunction thin film solar cell. Opt. Mater. Exp. 11(11), 3812–3826 (2021)

    Article  ADS  Google Scholar 

  • Kumar, A. and Thakur, A.D.: Improvement of efficiency in CZTSSe solar cell by using back surface field. In: IOP Conference Series: Materials Science and Engineering 360, p. 012027 (2018)

  • Lee, Y.S., Gershon, T., Gunawan, O., Todorov, T.K., Gokmen, T., Virgus, Y., Guha, S.: Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11 6% efficiency and improved minority carrier diffusion length. Adv. Energy Mater. 5, 2–5 (2015). https://doi.org/10.1002/aenm.201401372

    Article  Google Scholar 

  • Meftah, A.M., MeftahHiouaniMerazga, A.F.F.A.: Numerical simulation of the defect density influence on the steady state response of a silicon-based p–i–n cell. J. Phys. Condens. Matter 16, 2003 (2004)

    Article  ADS  Google Scholar 

  • Miles, R.W., Ogah, O.E., Zoppi, G., Forbes, I.: Thermally evaporated thin films of SnS for application in solar cell devices. Thin Solid Films 517(17), 4702–4705 (2009)

    Article  ADS  Google Scholar 

  • Minbashi, M., Ghobadi, A., Ehsani, M.H., Rezagholipour Dizaji, H., Memarian, N.: Simulation of high efficiency SnS-based solar cells with SCAPS. Solar Energy 176, 520–525 (2018). https://doi.org/10.1016/j.solener.2018.10.058

    Article  ADS  Google Scholar 

  • Minbashi, M., Ghobadi, A., Yazdani, E., Kordbacheh, A.A., Hajjiah, A.: Efficiency enhancement of CZTSSe solar cells via screening the absorber layer by examining of different possible defects. Sci. Rep. 10(1), 1–14 (2020)

    Article  Google Scholar 

  • Moon, M.M.A., Ali, M.H., Rahman, M.F., Hossain, J., Ismail, A.B.M.: Design and simulation of FeSi2-based novel heterojunction solar cells for harnessing visible and near-infrared light. Physica status solidi 217, 1900921 (2020). https://doi.org/10.1002/pssa.201900921

    Article  ADS  Google Scholar 

  • Park, S., Chen, H., Hiura, S., Takayama, J., Sueoka, K., Murayama, A.: Electric-field-effect spin switching with an enhanced number of highly polarized electron and photon spins using p-doped semiconductor quantum dots. ACS Omega 6(12), 8561–8569 (2021)

    Article  Google Scholar 

  • Qi, B., Zhou, Q., Wang, J.: Exploring the open-circuit voltage of organic solar cells under low temperature. Sci. Rep. 5, 11363 (2015)

    Article  ADS  Google Scholar 

  • Reddy, K.R., Reddy, P.P., Miles, R.W., Datta, P.K.: Investigations on SnS films deposited by spray pyrolysis. Opt. Mater. 17(1–2), 295–298 (2001)

    Article  ADS  Google Scholar 

  • Reddy, V.R.M., Cho, H., Sreedevi Gedi, K.T., Reddy, R., Kim, W.K., Park, C.: Effect of sulfurization temperature on the efficiency of SnS solar cells fabricated by sulfurization of sputtered tin precursor layers using effusion cell evaporation. J. Alloy. Compd. 806, 410–417 (2019a)

    Article  Google Scholar 

  • Reddy, V.R.M., Cho, H., Gedi, S., Reddy, K.R., Kim, W.K., Park, C.: Effect of sulfurization temperature on the efficiency of SnS solar cells fabricated by sulfurization of sputtered tin precursor layers using effusion cell evaporation. J. Alloy. Compd. 806, 410–417 (2019b)

    Article  Google Scholar 

  • Shao, S., Loi, M.A.: The role of the interfaces in perovskite solar cells. Adv. Mater. Interfaces 7(1), 1901469 (2020)

    Article  Google Scholar 

  • Shukla, V., Panda, G.: Effect of BSF layer on the performance of CdTe solar cell. Mater. Today: Proceed. 44(1), 2300–2303 (2021)

    Google Scholar 

  • Simya, O.K., Mahaboobbatcha, A., Balachander, K.: A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248–261 (2015). https://doi.org/10.1016/j.spmi.2015.02.020

    Article  ADS  Google Scholar 

  • Sinsermsuksakul, P., Sun, L., Lee, S.W., Park, H.H., Kim, S.B., Yang, C., Gordon, R.G.: Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4(15), 1400496 (2014)

    Article  Google Scholar 

  • Sohel Rana, Md., Mazharul Islam, Md., Julkarnain, M.: Enhancement in efficiency of CZTS solar cell by using CZTSe BSF layer. Solar Energy 226, 272–287 (2021)

    Article  ADS  Google Scholar 

  • Sohel Rana, Md., Mazharul Islam, Md., Julkarnain, M.: Enhancement in efficiency of CZTS solar cell by using CZTSe BSF layer. Sol. Energy 226, 272–287 (2021b)

    Article  ADS  Google Scholar 

  • Son, S.-I., Shin, D., Son, Y.G., Son, C.S., Kim, D.R., Park, J.H., Kim, S., Hwang, D., Song, P.: Effect of working pressure on the properties of RF sputtered SnS thin films and photovoltaic performance of SnS-based solar cells. J. Alloy. Compd. 831, 154626 (2020)

    Article  Google Scholar 

  • Ullah, H., Mari, B.: Numerical analysis of SnS based polycrystalline solar cells. Superlattices Microstruct. 72, 148–155 (2014)

    Article  ADS  Google Scholar 

  • Voznyi, A., Kosyak, V., Yeromenko, Y., Keller, J., Bērziņa, A., Shamardin, A., Iatsunskyi, I., Shpetnyi, I., Plotnikov, S., Opanasyuk, A.: Close-spaced sublimation of SnS absorber layers and SnS/CdS heterojunction solar cells with Mo and Ti back metal contacts. Thin Solid Films 709, 138153 (2020)

    Article  ADS  Google Scholar 

  • Weng, Q., Yang, L., An, Z., Chen, P., Tzalenchuk, A., Lu, W., Komiyama, S.: Quasiadiabatic electron transport in room temperature nanoelectronic devices induced by hot-phonon bottleneck. Nat. Commun. 12(1), 1–8 (2021)

    Article  Google Scholar 

  • Wu, L., Ji, Y., Ouyang, B., Li, Z., Yang, Y.: Low-temperature induced enhancement of photoelectric performance in semiconducting nanomaterials. Nanomaterials 11(5), 1131 (2021)

    Article  Google Scholar 

  • Yadav, R.K., Pawar, P.S., Neerugatti, K.E., Nandi, R., Cho, J.Y., Heo, J.: Effect of intrinsic ZnO thickness on the performance of SnS/CdS-based thin-film solar cells. Curr. Appl. Phys. 31, 232–238 (2021)

    Article  ADS  Google Scholar 

  • Youn, N.K., Jung, H.R., Gwak, J., Cho, A., Ahn, S.J., Ahn, S.K., Kim, J.H., Eo, Y.-J., Kim, D.H.: Fabrication of SnS solar cells via facile nanoparticle synthesis based on non-toxic solvents. Thin Solid Films 660, 294–300 (2018)

    Article  ADS  Google Scholar 

  • Zhang, Z., Yao, L., Zhang, Y., Ao, J., Bi, J., Gao, S., Gao, Q., Jeng, M.J., Sun, G., Zhou, Z., He, Q.: Modified back contact interface of CZTSe thin film solar cells: elimination of double layer distribution in absorber layer. Adv. Sci. 5(2), 1700645 (2018)

    Article  Google Scholar 

  • Zhao, L., Di, Y., Yan, C., Liu, F., Cheng, Z., Jiang, L., Hao, X., Lai, Y., Li, J.: In situ growth of SnS absorbing layer by reactive sputtering for thin film solar cells. RSC Adv. 6(5), 4108–4115 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All the authors like to thank all the developers of SCAPS-1D from University of Gent to make their software available free of cost. The authors like to acknowledge DST-SERB for their financial support under the grant no. SPR/2021/000568.

Funding

All the authors would like to thank DST-SERB for their financial assistance having grant number SPR/2021/000568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udai P. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, P., Garain, R., Basak, A. et al. Numerical modelling and performance evaluation of SnS based heterojunction solar cell with p+-SnS BSF layer. Opt Quant Electron 54, 867 (2022). https://doi.org/10.1007/s11082-022-04274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04274-7

Keywords

Navigation