Skip to main content
Log in

Temperature insensitive large free spectral range micro-ring resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Simultaneous temperature insensitive and large free spectral range (FSR) micro-ring resonator is reported using wide ring waveguide. The analysis has been performed using finite-difference time domain simulation. The wide waveguide facilitates the use of a small bending radius to increase the free spectral range with low bending losses. Temperature insensitivity is achieved by considering cladding region made of negative thermo-optic coefficient material, TiO2, over different guiding regions made of positive thermo-optic coefficient material, Si. We have analyzed and demonstrated that appropriate waveguide cross-section dimension provides balanced field delocalization in each material that ensures zero temperature sensitivity. The zero temperature sensitivity of the sensor is achieved while maintaining a high FSR ~45 nm. In contrast to the widely used SiO2 as the upper cladding material, for which a higher spectral shift of 73.4 pm/°C is observed, the temperature dependent wavelength shift in our proposed structure is completely eliminated. The relationship between full width at half maximum (FWHM) and temperature is also investigated, and it is shown that change of FWHM with temperature can be described by the coupling coefficient and group-index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets generated may be made available by the corresponding author on reasonable request.

References

  • Bagheri, A., Nazari, F., Moravvej-Farshi, M.K.: Tunable optical demultiplexer for dense wavelength division multiplexing systems using graphene-silicon microring resonators. J. Electr. Mater. 49(12), 7410–7419 (2020)

    Article  ADS  Google Scholar 

  • Bahadori, M., Nikdast, M., Rumley, S., Dai, L.Y., Janosik, N., Van Vaerenbergh, T., Gazman, A., Cheng, Q., Polster, R., Bergman, K.: Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature. J. Lightwave Technol. 36(13), 2767–2782 (2018)

    Article  ADS  Google Scholar 

  • Bao, J., Yan, S., Markovic, T., Ocket, I., Kil, D., Brancato, L., Puers, R., Nauwelaers, B.: A 20-GHZ microwave miniaturized ring resonator for nL microfluidic sensing applications. IEEE Sens. Lett. 3(6), 1–4 (2019)

    Article  Google Scholar 

  • Berry, A., Anand, N., Anandan, S., Krishnan, P.: High-performance eight-channel photonic crystal ring resonator-based optical demultiplexer for dwdm applications. Plasmonics 16(6), 2073–2080 (2021)

    Article  Google Scholar 

  • Biswas, U., Bharti, G.K., Rakshit, J.K.: Design of photonic crystal based optical sensor for analyzing water content in milk. In: International Conference on Innovation in Modern Science and Technology, pp. 143–149 (2019). Springer

  • Biswas, U., Rakshit, J.K., Das, J., Bharti, G.K., Suthar, B., Amphawan, A., Najjar, M.: Design of an ultra-compact and highly-sensitive temperature sensor using photonic crystal based single micro-ring resonator and cascaded micro-ring resonator. Silicon 13(3), 885–892 (2021)

    Article  Google Scholar 

  • Boeck, R., Shi, W., Chrostowski, L., Jaeger, N.A.F.: FSR-eliminated Vernier racetrack resonators using grating-assisted couplers. IEEE Photonics J. 5(5), 2202511–2202511 (2013). https://doi.org/10.1109/JPHOT.2013.2280342

    Article  ADS  Google Scholar 

  • Brunetti, G., Dell’Olio, F., Conteduca, D., Armenise, M.N., Ciminelli, C.: Ultra-compact tuneable notch filter using silicon photonic crystal ring resonator. J. Lightwave Technol. 37(13), 2970–2980 (2019)

    Article  ADS  Google Scholar 

  • Cai, J.-X., Mohs, G., Bergano, N.S.: Chapter 13 - ultralong-distance undersea transmission systems. In: Willner, A.E. (ed.) Optical Fiber Telecommunications VII, pp. 565–625. Academic Press, ??? (2020). https://doi.org/10.1016/B978-0-12-816502-7.00015-4. https://www.sciencedirect.com/science/article/pii/B9780128165027000154

  • Chen, G., Jiang, C.: Reverse design of microring resonator channel dropping filters. Results Phys. 19, 103380 (2020)

    Article  Google Scholar 

  • Dedyulin, S., Todd, A., Janz, S., Xu, D.-X., Wang, S., Vachon, M., Weber, J.: Packaging and precision testing of fiber-bragg-grating and silicon ring-resonator thermometers: current status and challenges. Measurement Sci. Technol. 31(7), 074002 (2020). https://doi.org/10.1088/1361-6501/ab7611

    Article  ADS  Google Scholar 

  • Demirtzioglou, I., Lacava, C., Bottrill, K.R., Thomson, D.J., Reed, G.T., Richardson, D.J., Petropoulos, P.: Frequency comb generation in a silicon ring resonator modulator. Opt. Express 26(2), 790–796 (2018)

    Article  ADS  Google Scholar 

  • Djordjevic, S.S., Shang, K., Guan, B., Cheung, S.T., Liao, L., Basak, J., Liu, H.-F., Yoo, S.: CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express 21(12), 13958–13968 (2013)

    Article  ADS  Google Scholar 

  • Eid, N., Boeck, R., Jayatilleka, H., Chrostowski, L., Shi, W., Jaeger, N.A.F.: FSR-free silicon-on-insulator microring resonator based filter with bent contra-directional couplers. Opt. Express 24(25), 29009–29021 (2016). https://doi.org/10.1364/OE.24.029009

    Article  ADS  Google Scholar 

  • Fan, X., White, I.M., Shopova, S.I., Zhu, H., Suter, J.D., Sun, Y.: Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 620(1), 8–26 (2008). https://doi.org/10.1016/j.aca.2008.05.022

    Article  Google Scholar 

  • Feng, S., Shang, K., Bovington, J.T., Wu, R., Guan, B., Cheng, K.-T., Bowers, J.E., Yoo, S.B.: Athermal silicon ring resonators clad with titanium dioxide for 1.3 \(\mu\)m wavelength operation. Opt. express 23(20), 25653–25660 (2015)

    Article  ADS  Google Scholar 

  • Guan, X., Frandsen, L.H.: All-silicon interferometer with multimode waveguides for temperature-insensitive filters and compact biosensors. Opt. Express 27(2), 753–760 (2019)

    Article  ADS  Google Scholar 

  • Guha, B., Cardenas, J., Lipson, M.: Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21(22), 26557–26563 (2013). https://doi.org/10.1364/OE.21.026557

    Article  ADS  Google Scholar 

  • Jean, P., Douaud, A., Thibault, T., LaRochelle, S., Messaddeq, Y., Shi, W.: Sulfur-rich chalcogenide claddings for athermal and high-q silicon microring resonators. Opt. Mater. Express 11(3), 913–925 (2021)

    Article  ADS  Google Scholar 

  • Kumari, S., Tripathi, S.M.: Hybrid plasmonic SOI ring resonator for bulk and affinity bio-sensing applications. Silicon, 1–10 (2022)

  • Ling, J., He, Y., Luo, R., Li, M., Liang, H., Lin, Q.: Athermal lithium niobate microresonator. Opt. Express 28(15), 21682–21691 (2020)

    Article  ADS  Google Scholar 

  • Liu, D., Zhang, L., Tan, Y., Dai, D.: High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J. Lightwave Technol. 39(18), 5910–5916 (2021)

    Article  ADS  Google Scholar 

  • Ma, X., Zhuang, C., Zeng, R., Zhou, W.: Large-dynamic-range athermal lithium niobite on insulator/Tio2 nanobeam electric field sensor. J. Phys. D: Appl. Phys. 54(10), 105101 (2020)

    Article  ADS  Google Scholar 

  • Mak, J.C.C., Xue, T., Yong, Z., Poon, J.K.S.: Wavelength tunable matched-pair Vernier multi-ring filters using derivative-free optimization algorithms. IEEE J. Sel. Top. Quantum Electr. 26(5), 1–12 (2020). https://doi.org/10.1109/JSTQE.2020.2975644

    Article  Google Scholar 

  • Milošević, M.M., Gardes, F.Y., Thomson, D.J., Mashanovich, Z.: Temperature insensitive racetrack resonators for near infrared applications. In: OFC/NFOEC, pp. 1–3 (2012)

  • Mokhtari, M.: Tunable optical filter design with ring resonator based sagnac loop. Optik 242, 167068 (2021). https://doi.org/10.1016/j.ijleo.2021.167068

    Article  ADS  Google Scholar 

  • Shi, W., Wang, X., Zhang, W., Yun, H., Lin, C., Chrostowski, L., Jaeger, N.A.: Grating-coupled silicon microring resonators. Appl. Phys. Lett. 100(12), 121118 (2012)

    Article  ADS  Google Scholar 

  • Silverstone, J.W., Santagati, R., Bonneau, D., Strain, M.J., Sorel, M., O’Brien, J.L., Thompson, M.G.: Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nature Commun. 6(1), 1–7 (2015)

    Article  Google Scholar 

  • Teng, J., Dumon, P., Bogaerts, W., Zhang, H., Jian, X., Han, X., Zhao, M., Morthier, G., Baets, R.: Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. express 17(17), 14627–14633 (2009)

    Article  ADS  Google Scholar 

  • Tripathi, S.M., Bock, W.J., Kumar, A., Mikulic, P.: Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings. Opt. Lett. 38(10), 1666–1668 (2013). https://doi.org/10.1364/OL.38.001666

    Article  ADS  Google Scholar 

  • Urbonas, D., Balčytis, A., Gabalis, M., Vaškevičius, K., Naujokaitė, G., Juodkazis, S., Petruškevičius, R.: Ultra-wide free spectral range, enhanced sensitivity, and removed mode splitting SOI optical ring resonator with dispersive metal nanodisks. Opt. Lett. 40(13), 2977–2980 (2015). https://doi.org/10.1364/OL.40.002977

    Article  ADS  Google Scholar 

  • Van, V.: Optical Microring Resonators: Theory, Techniques, and Applications. CRC Press, Florida (2016)

    Book  Google Scholar 

  • Verma, Y.K., Tripathi, S.M.: Simultaneous temperature and humidity insensitive race track ring resonator using silicon and titanium dioxide waveguides in cavity. Results Opt. 5, 100176 (2021). https://doi.org/10.1016/j.rio.2021.100176

    Article  Google Scholar 

  • Wu, C.-L., Hung, Y.-J., Fan, R., Ou, D.-H., Huang, J.-Y., Yen, T.-H., Chiu, Y.-J., Shih, M.-H., Lin, Y.-Y., Chu, A.-K., et al.: Tantalum pentoxide (ta 2 o 5) based athermal micro-ring resonator. OSA Contin. 2(4), 1198–1206 (2019)

    Article  Google Scholar 

  • Xu, D.-X., Vachon, M., Densmore, A., Ma, R., Janz, S., Delâge, A., Lapointe, J., Cheben, P., Schmid, J.H., Post, E., Messaoudène, S., Fédéli, J.-M.: Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays. Opt. Express 18(22), 22867–22879 (2010). https://doi.org/10.1364/OE.18.022867

    Article  ADS  Google Scholar 

  • Xu, H., Hafezi, M., Fan, J., Taylor, J., Strouse, G.F., Ahmed, Z.: Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt. Express 22(3), 3098–3104 (2014)

    Article  ADS  Google Scholar 

  • Xu, H., Hafezi, M., Fan, J., Taylor, J., Strouse, G.F., Ahmed, Z.: Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt. Express 22(3), 3098–3104 (2014)

    Article  ADS  Google Scholar 

  • Zhang, M., Buscaino, B., Wang, C., Shams-Ansari, A., Reimer, C., Zhu, R., Kahn, J.M., Lončar, M.: Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568(7752), 373–377 (2019)

    Article  ADS  Google Scholar 

  • Zhou, L., Okamoto, K., Yoo, S.: Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive pmma upper-cladding. IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Indian Institute of Technology Kanpur, India.

Funding

YKV, SK and GB are grateful for Institute Fellowship by Indian Institute of Technology Kanpur, India. The work was partially funded by Science and Engineering research Board, Government of India through project EMR/2016/007936.

Author information

Authors and Affiliations

Authors

Contributions

YKV: Conceptualization, performed simulations, data interpretation, writing-original draft. SK: Discussions, manuscript preparation and critical article revision for intellectual content. GB: Discussions, critical article revision for intellectual content. SMT: Supervision, and final approval of manuscript.

Corresponding author

Correspondence to Yogesh Kumar Verma.

Ethics declarations

Conflict of interests

The authors have no Conflict of interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, Y.K., Kumari, S., Bawa, G. et al. Temperature insensitive large free spectral range micro-ring resonator. Opt Quant Electron 54, 839 (2022). https://doi.org/10.1007/s11082-022-04266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04266-7

Keywords

Navigation