Skip to main content
Log in

Diamond core PET-PCF for supercontinuum generation using meager power with very low birefringence

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A new porous core PolyEthylene Terephthalate Photonic crystal fiber (PET-PCF) has been proposed that promises to demonstrate substantial optical nonlinearity with the SCG in the near-infrared region. The suggested structure has a diamond-shaped core, which allows for excellent confinement inside the core and aids in achieving an excellent nonlinear coefficient value of 6000 GW−1 km−1 and birefringence of the order of 10–4 at 1550 nm. The proposed material PET is exceptionally lightweight, efficient, shatterproof, and low cost with a very high nonlinear refractive index and simple to fabricate by using the usual stack-and-build process. The PET-PCF becomes a good nonlinear fiber due to the air-polymer combination. Nonlinear signal processing and supercontinuum production will be possible with the suggested fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Abdullah, A.I., Mohamad, H.M.: The effect of pitch size on the dispersion profile of photonic crystal fiber. Tikrit J. Pure Sci. 13, 128–135 (2008)

    Google Scholar 

  • Agrawal, A., Tiwari, M., Azabi, Y.O., Janyani, V., Rahman, B.M.A., Grattan, K.T.V.: Ultrabroad supercontinuum generation in tellurite equiangular spiral photonic crystal fiber. J. Opt. Soc. Ame. b. 60, 956–962 (2013)

    Google Scholar 

  • Ahmad, R., Komanec, M., Zvanovec, S.: Circular lattice photonic crystal fiber for mid-IR supercontinuum generation. IEEE Photonics Technol. Lett. 28, 2736–2739 (2016)

    Article  ADS  Google Scholar 

  • Ahmed, K., Islam, M.I., Paul, B.K., Islam, M.S., Sen, S., Chowdhury, S., Uddin, M.S., Asaduzzaman, S., Bahar, A.N.: Effect of photonic crystal fiber background materials in sensing and communication applications. Mater. Discov. 7, 8–14 (2017)

    Article  Google Scholar 

  • Ani, A.B., Faisal, M.: Ultra-flattened broadband dispersion compensating photonic crystal fiber with ultra-low confinement loss. In: 9th International Conference on Electrical and Computer Engineering (ICECE), pp. 243–246. IEEE, Dhaka, Bangladesh (2016)

  • Benhaddad, M., Kerrour, F., Benabbes, O.: Design and analysis of non-linear properties of photonic crystal fiber with Various Doping Concentration. J. Phys: Conf. Ser. 987, 012010–012015 (2017)

    Google Scholar 

  • Benhaddad, M., Kerrour, F., Benabbes, O.: Design and analysis of non-linear properties of photonic crystal fibre with Various Doping Concentration March. In: Journal of Physics Conference Series (2018)

  • Birks, T.A., Knight, J.C., Russell, P.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  • Biswas, S., Rafi, R.S., Al-Amin, M.A., Alam, S.: Analysis of the effect of air hole diameter and lattice pitch in optical properties for hexagonal photonic crystal fiber. Opt. Photonics J. 05, 227–233 (2015)

    Article  ADS  Google Scholar 

  • Chen, K.K., Alam, S., Price, J.H.V., Hayes, J.R., Lin, D., Malinowski, A., Codemard, C., Ghosh, D., Pal, M., Bhadra, S.K., Richardson, D.J.: Picosecond fiber MOPA pumped supercontinuum source with 39 W output power. Opt. Express 18, 5426–5432 (2010)

    Article  ADS  Google Scholar 

  • Cherif, R., Zghal, M., Tartara, L., Degiorgio, V.: Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber. Opt. Express 16, 2147–2152 (2008)

    Article  ADS  Google Scholar 

  • Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)

    Article  ADS  Google Scholar 

  • Fan, L., Xu, L., Cai, H., Sun, X., Zhao, F., Li, Z., Qi, Z.: Study on dispersion of photonic crystal fiber. In: International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp. 210–216. IEEE, Changchun, China (2015)

  • Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. r. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character. 119, 173–181 (1928)

    ADS  MATH  Google Scholar 

  • Hu, H., Li, W., Dutta, N.K.: Supercontinuum generation in dispersion-managed tapered-rib waveguide. Appl. Opt. 52, 7336–7341 (2013)

    Article  ADS  Google Scholar 

  • Husakou, A.V., Herrmann, J.: Supercontinuum generation four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers. J. Opt. Soc. Am. B 19, 2171–2182 (2022)

    Article  ADS  Google Scholar 

  • Kaltenecker, K.J., Rao, D.S.S., Rasmussen, M., Lassen, H.B., Kelleher, E.J.R., Krauss, E., Hecht, B., Mortensen, N.A., Grüner-Nielsen, L., Markos, C., Bang, O., Stenger, N., Jepsen, P.U.: Near-infrared nanospectroscopy using a low-noise supercontinuum source. APL Photonics 6, 066106–066117 (2021)

    Article  ADS  Google Scholar 

  • Khan, K.R., Wu, T.X.: Short pulse propagation in wavelength selective index-guided photonic crystal fiber coupler. IEEE J. Sel. Top. Quantum Electron. 14, 752–757 (2008)

    Article  ADS  Google Scholar 

  • Kibler, B., Dudley, J.M., Coen, S.: Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber influence of the frequency-dependent effective mode area. Appl. Phys. B 81, 337–342 (2005)

    Article  ADS  Google Scholar 

  • Li, X., Xu, Z., Ling, W., Liu, P.: Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion. Appl. Opt. 53, 6682–6687 (2017)

    Article  ADS  Google Scholar 

  • Mejean, G., Kasparian, J., Salmon, E., Yu, J., Wolf, J.P., Bourayou, R., Sauerbrey, R., Rodriguez, M., Woste, L., Lehmann, H., Stecklum, B., Laux, U., Eisloffel, J., Scholz, A., Hatzes, A.P.: Towards a supercontinuum-based infrared LIDAR. Appl. Phys. B Lasers Opt. 77, 357–359 (2003)

    Article  ADS  Google Scholar 

  • Mia, M.B., Ani, A.B., Chowdhury, K.R., Faisal, M.: Highly nonlinear and low confinement loss photonic crystal fiber using GaP slot core. In: IEEE International Conference on Telecommunications and Photonics (ICTP), pp. 10–14. IEEE, Dhaka (2017)

  • Mouna, S.T., Habib, A.A., Alam, M.S.: Design and analysis of supercontinuum generating Hybrid polymer photonic crystal fibre for medical imaging. In: IEEE International Conference on Telecommunications and Photonics (ICTP) (2019)

  • Park, H.C., Hwang, I.K., Yeom, D.I., Kim, B.Y.: Analyses of cladding modes in photonic crystal fiber. Opt. Express 15, 15154–15160 (2007)

    Article  ADS  Google Scholar 

  • Payne, D.N., Barlow, A.J., Ramskov Hansen, J.J.: Development of low- and high-birefringence optical fibers. IEEE Trans. Microw. Theory Tech. 30, 323–334 (1982)

    Article  ADS  Google Scholar 

  • Poudel, C., Kaminski, C.F.: Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications. J. Opt. Soc. Am. B 36, A139–A153 (2019)

    Article  ADS  Google Scholar 

  • Raja, S.J., Rao, S.S., Charlcedony, R.: Design and analysis of dispersion-compensating chalcogenide photonic crystal fiber with high birefringence. Appl. Sci. 2, 499–506 (2020)

    Google Scholar 

  • Ross, J.N.: The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects. Opt. Quant. Electron. 16, 455–461 (1984)

    Article  ADS  Google Scholar 

  • Saini, T.S., Supradeepa, V.R.: Tellurium-oxide coated siliconnitride hybrid waveguide for near-to-mid-IR supercontinuum generation design and analysis. J. Mod. Opt. 68, 29–36 (2021)

    Article  ADS  Google Scholar 

  • Sen, S., Islam Mohammed, S., Paul, B.K., Islam Mohammed, I., Chowdhury, S., Ahmed, K., Hasan Mohammed, R., Uddin, M.S., Asaduzzaman, S.: Ultra-low loss with single mode polymer-based photonic crystal fiber for THz waveguide. J. Opt. Commun. 40, 411–417 (2017)

    Article  Google Scholar 

  • Sharma, M., Borogohain, N., Konar, S.: Index guiding photonic crystal fibers with large birefringence and walk-off. J. Lightwave Technol. 31, 3339–3344 (2013a)

    Article  ADS  Google Scholar 

  • Sharma, M., Konar, S., Khan, K.R.: Supercontinuum generation in highly nonlinear hexagonal photonic crystal fiber at very low power. J. Nanophotonics 9, 093073–093081 (2015)

    Article  ADS  Google Scholar 

  • Sharma, M., Borgohain, N., Konar, S.: Highly birefringence photonic crystal fiber with anomalous dispersion. In: International Conference on Microwave and Photonics (ICMAP) 2013 International Conference on Microwave and Photonics (ICMAP), pp. 1–4. IEEE, Dhanbad, India (2013b)

  • Tiwari, M., Janyani, V.: Two-octave spanning supercontinuum in a soft glass photonic crystal fiber suitable for 1.55 µm pumping. Lightwave Technol. 29, 3560–3565 (2011)

    Article  ADS  Google Scholar 

  • Travers, J.C., Rulkov, A.B., Cumberland, B.A., Popov, S.V., Taylor, J.R.: Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser. Opt. Express 16, 14435–14447 (2008)

    Article  ADS  Google Scholar 

  • Uebel, P., Mak, K.F., Frosz, M.H., Travers, J.C., Russell, P.: Scientific and industrial applications of hollow-core photonic crystal fibers. In: Imaging and Applied Optics. Applied Industrial Optics: Spectroscopy, Imaging and Metrology, p AITh1F, pp. 3–6. OSA, Arlington, Virginia (2015)

  • Upadhyay, A., Singh, S., Sharma, D., Taya, S.A.: Highly birefringent bend-insensitive porous core PCF for endlessly single-mode operation in THz regime: an analysis with core porosity. Appl. Nanosci. 11, 1021–1030 (2021)

    Article  ADS  Google Scholar 

  • Woliński, T.R., Ertman, S., Tefelska, M., Lesiak, P., Domański, A.W., Dąbrowski, R., Nowinowski-Kruszelnicki, E.: Dynamically tunable birefringence in photonic liquid crystal fibers. In: XIX IMEKO World Congress Fundamental and Applied Metrology, pp. 84–87 (2009)

  • Xu, X., Xiong, G., Xu, D.: Parameter-dependent dispersion and transmission in a novel tunable photonic crystal fiber. Int. J. Mod. Phys. B 25, 1069–1080 (2011)

    Article  ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

VD: Investigation, software, writing—original draft preparation. MSMR: editing, supervision. MS: conceptualization, methodology.

Corresponding author

Correspondence to M. S. Mani Rajan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devika, V., Mani Rajan, M.S. & Sharma, M. Diamond core PET-PCF for supercontinuum generation using meager power with very low birefringence. Opt Quant Electron 54, 858 (2022). https://doi.org/10.1007/s11082-022-04264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04264-9

Keywords

Navigation