Skip to main content
Log in

On some novel optical solitons to the cubic–quintic nonlinear Helmholtz model

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The purpose of this study is to employ the Sine–Cosine expansion approach to produce some new sort of soliton solutions for the cubic–quintic nonlinear Helmholtz problem. The nonlinear complex model compensates for backward scattering effects that are overlooked in the more popular nonlinear Schrödinger equation. As a result, a number of novel traveling wave structures have been discovered. We also investigate the stability of solitary wave solutions for the governing model. Furthermore, the modulation instability is discussed by employing the standard linear-stability analysis. The 3D, contour and 2D graphs are visualized for several fascinating exact solutions to comprehend their behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Abdou, M., Soliman, A.: New applications of variational iteration method. Physica D 211(1–2), 1–8 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., et al.: Dynamical behaviour of Chiral nonlinear Schrodinger equation. Opt. Quantum Electron. 54(3), 1–15 (2022a)

    Article  MathSciNet  Google Scholar 

  • Akinyemi, L., et al.: An efficient computational technique for class of generalized Boussinesq shallow-water wave equations. J. Ocean Eng. Sci. (2022b). https://doi.org/10.1016/j.joes.2022.04.023

    Article  Google Scholar 

  • Akinyemi, L., et al.: Computational techniques to study the dynamics of generalized unstable nonlinear Schrodinger equation. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.02.011

    Article  Google Scholar 

  • Ali, S., Younis, M., Ahmad, M.O., Rizvi, S.T.R.: Rogue wave solutions in nonlinear optics with coupled Schrodinger equations. Opt. Quantum Electron. 50(7), 266 (2018)

    Article  Google Scholar 

  • Ali, I., Rizvi, S.T.R., Abbas, S.O., Zhou, Q.: Optical solitons for modulated compressional dispersive alfven and heisenberg ferromagnetic spin chains. Results Phys. 15, 102714 (2019)

    Article  Google Scholar 

  • Arif, A., Younis, M., Imran, M., Tantawy, M., Rizvi, S.T.R.: Solitons and lump wave solutions to the graphene thermophoretic motion system with a variable heat transmission. Eur. Phys. J. Plus 134(6), 303 (2019)

    Article  Google Scholar 

  • Arife, A., Yildirim, A.: New modified variational iteration transform method (MVITM) for solving eighth-order boundary value problems in one step. World Appl. Sci. J. 13, 756–761 (2011)

    Google Scholar 

  • Baskonus, H.M.: Complex soliton solutions to the Gilson–Pickering model. Axioms 8(1), 18 (2019)

    Article  MATH  Google Scholar 

  • Das, N., Saha Ray, S.: Novel optical soliton solutions for time-fractional resonant nonlinear Schrodinger equation in optical fiber. Opt. Quantum Electron. 54(2), 1–23 (2022)

    Article  Google Scholar 

  • Esen, H., et al.: Analytical soliton solutions of the higher order cubic–quintic nonlinear Schrodinger equation and the influence of the model parameters. J. Appl. Phys. 132(5), 053103 (2022)

    Article  ADS  Google Scholar 

  • Fang, L.X., Jarad, F., Hashemi, M.S., Riaz, M.B.: A reduction technique to solve the generalized nonlinear dispersive mK(m, n) equation with new local derivative. Results Phys. 38, 105512 (2022)

    Article  Google Scholar 

  • Fu, Z., Liu, S., Liu, S., Zhao, Q.: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 290(1–2), 72–76 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Goswami, A., Singh, J., Kumar, D., et al.: An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A 524, 563–575 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hashemi, M.S., Baleanu, D.: Lie Symmetry Analysis of Fractional Differential Equations. Chapman and Hall/CRC, London (2020)

    Book  MATH  Google Scholar 

  • Hashemi, M.S., Haji-Badali, A., Vafadar, P.: Group invariant solutions and conservation laws of the Fornberg–Whitham equation. Z. Naturforschung A 69(8–9), 489–496 (2014)

    Article  ADS  Google Scholar 

  • Hashemi, M.S., Bahrami, F., Najafi, R.: Lie symmetry analysis of steady-state fractional reaction–convection–diffusion equation. Optik 138, 240–249 (2017)

    Article  ADS  Google Scholar 

  • Hassan, S., Abdelrahman, M.A.: Solitary wave solutions for some nonlinear time-fractional partial differential equations. Pramana 91(5), 67 (2018)

    Article  ADS  Google Scholar 

  • Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg–de Vries equation. Phys. Lett. A 85(8–9), 407–408 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • Hosseini, K., Mayeli, P., Kumar, D.: New exact solutions of the coupled sine-Gordon equations in nonlinear optics using the modified Kudryashov method. J. Mod. Opt. 65(3), 361–364 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Hua, Y.-F., Guo, B.-L., Ma, W.-X., Lu, X.: Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Khater, M.A.: Computational simulations of the cubic–quintic nonlinear Helmholtz model. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.019

    Article  Google Scholar 

  • Khater, M.M., Park, C., Lu, D., Attia, R.A.: Analytical, semi-analytical, and numerical solutions for the Cahn–Allen equation. Adv. Differ. Equ. 2020(1), 1–12 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Lawrence, B.L., Stegeman, G.I.: Two-dimensional bright spatial solitons stable over limited intensities and ring formation in polydiacetylene para-toluene sulfonate. Opt. Lett. 23(8), 591–593 (1998)

    Article  ADS  Google Scholar 

  • Mathanaranjan, T., et al.: Optical solitons in metamaterials with third and fourth order dispersions. Opt. Quantum Electron. 54(5), 1–15 (2022)

    Article  Google Scholar 

  • Mohamed, M.S., et al.: Abundant solitary wave solutions of the Chen–Lee–Liu equation via a novel analytical technique. Opt. Quantum Electron. 54(3), 1–14 (2022)

    Article  Google Scholar 

  • Nawaz, B., Ali, K., Abbas, S.O., Rizvi, S.T.R., Zhou, Q.: Optical solitons for non-Kerr law nonlinear Schrodinger equation with third and fourth order dispersions. Chin. J. Phys. 60, 133–140 (2019)

    Article  MathSciNet  Google Scholar 

  • Ntiamoah, D., William, O.A., Akinyemi, L.: The higher-order modified Korteweg–de Vries equation: its soliton, breather and approximate solutions. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.042

    Article  Google Scholar 

  • Osman, M., Lu, D., Khater, M.M.: A study of optical wave propagation in the nonautonomous Schrodinger–Hirota equation with power-law nonlinearity. Results Phys. 13, 102157 (2019)

    Article  Google Scholar 

  • Osman, M., Baleanu, D., Tariq, K.U., Kaplan, M., Younis, M., Rizvi, S.T.R.: Different types of progressive wave solutions via the 2d-chiral nonlinear Schrodinger equation. Front. Phys. 8, 215 (2020)

    Article  Google Scholar 

  • Pashayi, S., Hashemi, M.S., Shahmorad, S.: Analytical lie group approach for solving fractional integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 51, 66–77 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Peng, W.-Q., Tian, S.-F., Wang, X.-B., Zhang, T.-T., Fang, Y.: Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrodinger equations. J. Geom. Phys. 146, 103508 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Rizvi, S.R., Afzal, I., Ali, K., Younis, M.: Stationary solutions for nonlinear Schrodinger equations by lie group analysis. Acta Phys. Pol. A 136, 187–189 (2019a)

    Article  ADS  Google Scholar 

  • Rizvi, S.T.R., Ali, K., Hanif, H.: Optical solitons in dual core fibers under various nonlinearities. Mod. Phys. Lett. B 33(17), 1950189 (2019b)

    Article  ADS  MathSciNet  Google Scholar 

  • Rizvi, S.T.R., Afzal, I., Ali, K.: Chirped optical solitons for Triki–Biswas equation. Mod. Phys. Lett. B 33(22), 1950264 (2019c)

    Article  ADS  MathSciNet  Google Scholar 

  • Rizvi, S.T.R., Ali, K., Ahmad, M.: Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method. Optik 240, 164181 (2020)

    Article  ADS  Google Scholar 

  • Sabiu, J., et al.: New optical solitons for the Biswas–Arshed model in birefringent fibers. Discrete Cont. Dyn. S 13(3), 1–13 (2020)

    Google Scholar 

  • Schormann, H.: Traveling-wave solutions of the cubic–quintic nonlinear Schrodinger equation. Phys. Rev. E 54(4), 4312 (1996)

    Article  ADS  Google Scholar 

  • Schormann, H., Serov, V., Nickel, J.: Superposition in nonlinear wave and evolution equations. Int. J. Theor. Phys. 45(6), 1057–1073 (2006)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.R., et al.: Chirped periodic waves for an cubic–quintic nonlinear Schrodinger equation with self steepening and higher order nonlinearities. Chaos Solitons Fractals 156, 111804 (2022)

    Article  MathSciNet  Google Scholar 

  • Tamilselvan, K., Kanna, T., Govindarajan, A.: Cubic–quintic nonlinear Helmholtz equation: modulational instability, chirped elliptic and solitary waves. Chaos Interdiscip. J. Nonlinear Sci. 29(6), 063121 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Tanev, S., Pushkarov, D.I.: Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides. Opt. Commun. 141(5–6), 322–328 (1997)

    Article  ADS  Google Scholar 

  • Tariq, K.U., Tufail, R.J.: Lump and travelling wave solutions of a (3 + 1)-dimensional nonlinear evolution equation. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.04.018

    Article  Google Scholar 

  • Tariq, K.U., Seadawy, A.R., Younis, M.: Explicit, periodic and dispersive optical soliton solutions to the generalized nonlinear Schrodinger dynami3al equation with higher order dispersion and cubic–quintic nonlinear terms. Opt. Quantum Electron. 50(3), 163 (2018)

    Article  Google Scholar 

  • Tariq, K.U., Tala-Tebue, E., Rezazadeh, H., Younis, M., Bekir, A., Chu, Y.-M.: Construction of new exact solutions of the resonant fractional NLS equation with the extended Fan sub-equation method. J. King Saud Univ. Sci. 33(8), 101643 (2021)

    Article  Google Scholar 

  • Wazwaz, A.-M.: Bright and dark optical solitons for (2 + 1)-dimensional Schrodinger equations in the anomalous dispersion regimes and the normal dispersive regimes. Optik 192, 162948 (2019)

    Article  ADS  Google Scholar 

  • Wu, C., Rui, W.: Method of separation variables combined with homogenous balanced principle for searching exact solutions of nonlinear time-fractional biological population model. Commun. Nonlinear Sci. Numer. Simul. 63, 88–100 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Xia, F.L., et al.: A reduction technique to solve the generalized nonlinear dispersive mK (m, n) equation with new local derivative. Results Phys. 38, 105512 (2022)

    Article  Google Scholar 

  • Yokus, A., Durur, H., Abro, K.A., Kaya, D.: Role of Gilson–Pickering equation for the different types of soliton solutions: a nonlinear analysis. Eur. Phys. J. Plus 135(8), 1–19 (2020)

    Article  Google Scholar 

  • Younas, B., Younis, M., Ahmed, M.O., Rizvi, S.T.R.: Chirped optical solitons in nanofibers. Mod. Phys. Lett. B 32(26), 1850320 (2018)

    Article  ADS  Google Scholar 

  • Zafar, A.: Rational exponential solutions of conformable space-time fractional equal-width equations. Nonlinear Eng. 8(1), 350–355 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhou, Q., et al.: Dark and singular optical solitons with competing nonlocal nonlinearities. Opt. Appl. 46, 79–86 (2016)

    Google Scholar 

  • Zhou, Q., Ekici, M., Sonmezoglu, A.: Exact chirped singular soliton solutions of Triki–Biswas equation. Optik 181, 338–342 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khater, M.M.A., Inc, M., Tariq, K.U. et al. On some novel optical solitons to the cubic–quintic nonlinear Helmholtz model. Opt Quant Electron 54, 848 (2022). https://doi.org/10.1007/s11082-022-04250-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04250-1

Keywords

Navigation