Skip to main content
Log in

A variety of solitons and other wave solutions of a nonlinear Schrödinger model relating to ultra-short pulses in optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper is performed to extract solitons and other solitary wave solutions of the generalized third-order nonlinear Schrödinger model by implementing two compatible schemes like improved auxiliary equation and enhanced rational \(({G}^{^{\prime}}/G)\)-expansion methods. The mentioned equation governs extensive applications in numerous disciplines of engineering and applied science and demonstrate how short-ultra pulses in optical fibers and quantum characteristics interact dynamically. A stack of hyperbolic, rational, and trigonometric function solitary wave solutions is magnificently constructed by means of the indicated schemes. Some of the acquired wave solutions are characterized graphically in 3D outlines, contour forms and 2D shapes to illustrate the dynamical behavior. The density of nonlinearity is brought out by contour plots and 2D outlines make clear the dynamic nature of pulse transmission. A comparable analysis of this study with the available consequences in literature confirms the innovation and assortment of present accomplished wave solutions and hence enhances the great performance of the employed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akbar, M.A., Ali, N.H.M., Tanjim, T.: Outset of multiple soliton solutions to the nonlinear Schrödinger equation and the coupled Burgers equations. J. Phys. Commun. 3, 1–10 (2019)

    Article  Google Scholar 

  • Biswas, A.: Soliton solutions of the perturbed resonant nonlinear Schrödinger’s equation with full nonlinearity by semi-inverse variational principle. Quant. Phys. Lett. 1, 79–83 (2013)

    Google Scholar 

  • Biswas, A., Zhou, Q., Ullah, M.Z., Asma, M., Moshokoa, S.P., Belic, M.: Perturbation theory and optical soliton cooling with anti-cubic nonlinearity. Optik 142, 73–76 (2017)

    Article  ADS  Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., Belic, M.R.: Highly dispersive optical solitons with cubic-quintic-septic law by F-expansion. Optik- Int. J. Light Elect. Opt. 182, 897–906 (2019)

    Article  Google Scholar 

  • Cheema, N., Younis, M.: New and more general traveling wave solutions for nonlinear Schrödinger equation. Waves Random Complex Media 26, 30–41 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chowdhury, M.A., Miah, M.M., Ali, H.M.S., Chu, Y.M., Osman, M.S.: An investigation to the nonlinear (2+1)-dimensional soliton equation for discovering explicit and periodic wave solutions. Res. Phys. 23, 1–11 (2021)

    Google Scholar 

  • Ebadi, G., Yildirim, A., Biswas, A.: Chiral solitons with Bohm potential using G’/G method and exp-function method. Rom. Rep. Phys. 64, 357–366 (2012)

    Google Scholar 

  • Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Zhou, Q., Triki, H., Ullah, M.Z., Moshokoa, S.P., Biswas, A.: Optical solitons in birefringent fibers with Kerr nonlinearity by exp-function method. Optik 131, 964–976 (2017)

    Article  ADS  Google Scholar 

  • Gao, W., Ismael, H.F., Husien, A.M., Bulut, H., Baskonus, H.M.: Optical soliton solutions of the cubic-quartic nonlinear Schrödinger and resonant nonlinear Schrödinger equation with the parabolic law. Appl. Sci. 10, 1–9 (2020)

    Article  Google Scholar 

  • Gu, J., Akbulut, A., Kaplan, M., Kaabar, M.K.A., Yue, X.G.: A novel investigation of exact solutions of the coupled nonlinear Schrödinger equations arising in ocean engineering, plasma waves, and nonlinear optics. J. Ocean. Eng. Sci. 1–13 (2022). https://doi.org/10.1016/j.joes.2022.06.014

    Article  Google Scholar 

  • Hemida, K.M., Gepreel, K.A., Mohamed, M.S.: Analytical approximate solution to the time-space nonlinear partial fractional differential equations. Int. J. Pure Appl. Math. 78, 233–243 (2012)

    MATH  Google Scholar 

  • Hosseini, K., Osman, M.S., Mirzazadeh, M., Rabiei, F.: Investigation of different wave structures to the generalized third-order nonlinear Schrödinger equation. Optik 206, 18–29 (2020)

    Article  ADS  Google Scholar 

  • Islam, M.T., Aguilar, J.F.G., Akbar, M.A., Anaya, G.F.: Diverse soliton structures for fractional nonlinear Schrödinger equation, KdV equation and WBBM equation adopting a new technique. J. Opt. Quant. Electron. 53, 1–12 (2021a)

    Article  Google Scholar 

  • Islam, M.T., Akbar, M.A., Guner, O., Bekir, A.: Apposite solutions to fractional nonlinear Schrödinger-type evolution equations occurring in quantum mechanics. Mod. Phys. Lett. B 35, 1–16 (2021b)

    Article  ADS  Google Scholar 

  • Islam, M.T., Akbar, M.A., Ahmad, H., Ilhan, O.A., Gepreel, K.A.: Diverse and novel soliton structures of coupled nonlinear Schrödinger type equations through two competent techniques. Mod. Phys. Lett. B 36, 1–15 (2022c)

    Article  ADS  Google Scholar 

  • Islam, M.T., Akbar, M.A., Ahmad, H.: Diverse optical soliton solutions of the fractional coupled (2+1)-dimensional nonlinear Schrödinger equations. J. Opt. Quantum Electron. 54, 1–16 (2022b)

    Google Scholar 

  • Islam, M.T., Akter, M.A., Aguilar, J.F.G., Akbar, M.A.: Novel and diverse soliton constructions for nonlinear space-time fractional modified Camassa-Holm equation and Schrödinger equation. J. Opt. Quantum Electron. 54, 1–15 (2022c)

    Article  Google Scholar 

  • Ismael, H.F., Bulut, H., Baskonus, H.M., Gao, W.: Dynamical behaviors to the coupled Schrödinger-Boussinesq system with the beta derivative. AIMS Math. 6, 7909–7928 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Kaplan, M., Unsal, O., Bekir, A.: Exact solutions of nonlinear Schrödinger equation by using symbolic computation. Math. Meth. Appl. Sci. 39, 2093–2099 (2016)

    Article  MATH  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  • Li, C., Guo, Q., Zhao, M.: On the solutions of (2+1)-dimensional time-fractional Schrödinger equation. Appl. Math. Lett. 94, 238–243 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, W., Yu, W., Yang, C., Liu, M., Zhang, Y., Lie, M.: Analytic solutions for the generalized complex Ginzburg-Landau equation in fiber lasers. Nonlinear Dyn. 89, 2933–2939 (2017)

    Article  MathSciNet  Google Scholar 

  • Liu, X., Liu, W., Triki, H., Zhou, Q., Biswas, A.: Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 96, 801–809 (2019)

    Article  MATH  Google Scholar 

  • Lu, D., Seadawy, A.R., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 140, 136–144 (2017)

    Article  ADS  Google Scholar 

  • Lu, D., Seadawy, A.R., Wang, J., Arshad, M., Farooq, U.: Soliton solutions of the generalized third-order nonlinear Schrödinger equation by two mathematical methods and their stability. Pramana-J. Phys. 93, 1–9 (2019)

    Article  Google Scholar 

  • Malik, S., Kumar, S., Biswas, A., Ekici, M., Dakova, A., Alzahrani, A.K., Belic, M.R.: Optical solitons and bifurcation analysis in fiber Bragg gratings with Lie symmetry and Kudryashov’s approach. Nonlinear. Dyn. 105, 735–751 (2021a)

    Article  Google Scholar 

  • Malik, S., Kumar, S., Nisar, K.S., Saleel, C.A.: Different analytical approaches for finding novel optical solitons with generalized third-order nonlinear Schrödinger equation. Results Phys. 29, 1–14 (2021b)

    Article  Google Scholar 

  • Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  • Nasreen, N., Seadawy, A.R., Lu, D., Albarakati, W.A.: Dispersive solitary wave and soliton solutions of the generalized third order nonlinear Schrödinger dynamical equation by modified analytical method. Results Phys. 15, 1–10 (2019)

    Article  Google Scholar 

  • Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  • Osman, M.S., Almusawa, H., Tariq, K.U., Anwar, S., Kumar, S., Younis, M., Ma, W.X.: On global behavior for complex soliton solutions of the perturbed nonlinear Schrödinger equation in nonlinear optical fibers. J. Ocean. Eng. Sci. 1–9 (2022). https://doi.org/10.1016/j.joes.2021.09.018

    Article  Google Scholar 

  • Pandir, Y., Duzgun, H.H.: New exact solutions of the space-time fractional cubic Schrödinger equation using the new type F-expansion method. Waves Random Complex Med. 29, 425–434 (2019)

    Article  ADS  MATH  Google Scholar 

  • Rizvi, S.T.R., Ali, K., Bashir, S., Younis, M., Ashraf, R., Ahmad, M.O.: Exact solution of (2+1)-dimensional fractional Schrödinger equation. Superlattices Microstruct. 107, 234–239 (2017)

    Article  ADS  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Younis, M., Iqbal, S., Althobaiti, S., El-Shehawi, A.M.: Various optical soliton for weak fractional nonlinear Schrödinger equation with parabolic law. Results Phys. 23, 1–24 (2021)

    Article  Google Scholar 

  • Salam, E.A.B.A., Yousif, E., El-Aasser, M.: Analytical solution of the space-time fractional nonlinear Schrödinger equation. Rep. Math. Phys. 77, 19–34 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Savescu, M., Khan, K.R., Naruka, P., Jafari, H., Moraru, L., Biswas, A.: Optical solitons in photonic nano waveguides with an improved nonlinear Schrödinger’s equation. J. Comput. Theor. Nanosci. 10, 1182–1191 (2013)

    Article  Google Scholar 

  • Wang, H., Liang, J., Chen, G., Ling, D.: Ultra-short pulses in optical fibers with complex parameters. Proceed. SPIE 9233, 186–190 (2014)

    Google Scholar 

  • Wazwaz, A.M.: Partial differential equations: Method and applications. Taylor and Francis, London (2002)

    MATH  Google Scholar 

  • Wazwaz, A.M., Kaur, L.: Optical solitons for nonlinear Schrödinger (NLS) equation in normal dispersive regimes. Optik-Int. J. Light Elect. Opt. 184, 428–435 (2019)

    Article  Google Scholar 

  • Yildirim, Y., Biswas, A., Jawad, A.J.M., Ekici, M., Zhou, Q., Khan, S., Alzahrani, A.K., Belic, M.R.: Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. Results Phys. 16, 1–15 (2020)

    Article  Google Scholar 

  • Younas, U., Ren, J.: Investigation of exact soliton solutions in magneto-optic waveguides and its stability analysis. Results Phys. 21, 1–16 (2021)

    Article  Google Scholar 

  • Younas, U., Ren, J.: Diversity of wave structures to the conformable fractional dynamical model. J. Ocean Eng. Sci. 1–17 (2022). https://doi.org/10.1016/j.joes.2022.04.014

    Article  Google Scholar 

  • Younas, U., Bilal, M., Ren, J.: Propagation of the pure-cubic optical solitons and stability analysis in the absence of chromatic dispersion. Opt. Quantum Electron. 53, 1–20 (2021)

    Article  Google Scholar 

  • Younas, U., Bilal, M., Ren, J.: Diversity of exact solutions and solitary waves with the influence of damping effect in ferrites materials. J. Magnet. Magnet. Mater. 549, 20–41 (2022a)

    Article  Google Scholar 

  • Younas, U., Ren, J., Baber, M.Z., Yasin, M.W., Shahzad, T.: Ion-acoustic wave structurea in the fluid ions modeled by higher dimensional generalized Korteweg-de Vries-Zakharov-Kuznetsov equation. J. Ocean Eng. Sci. 1–16 (2022b). https://doi.org/10.1016/j.joes.2022b.05.005

    Article  Google Scholar 

  • Younas, U., Ren, J., Bilal, M.: Dynamics of optical pulses in fiber optics. Mod. Phys. Lett. B 36, 1–12 (2022c)

    Article  ADS  MathSciNet  Google Scholar 

  • Younas, U., Rezazadeh, H., Ren, J., Bilal, M.: Propagation of diverse exact solitary wave solutions in separation phase of iron (Fe-Cr-X(X=Mo, Cu)) for the ternary alloys. Int. J. Mod. Phys. B 36, 1–15 (2022d)

    Article  ADS  Google Scholar 

  • Younas, U., Bilal, M., Sulaiman, T.A., Ren, J., Yusuf, A.: On the exact soliton solutions and different wave structures to the double dispersive equation. Opt. Quantum Electron 54, 1–16 (2022e)

    Article  Google Scholar 

  • Younis, M., Cheemaa, N., Mehmood, S.A., Rizvi, S.T.R., Bekir, A.: A variety of exact solutions to (2+1)-dimensional Schrödinger equation. Waves Random Complex Med. 30, 490–499 (2018)

    Article  ADS  MATH  Google Scholar 

  • Zayed, E.M.E., Nofal, T.A., Gepreel, K.A., Shohib, R.M.A., Alngar, M.E.M.: Cubic-quartic optical soliton solutions in fiber Bragg gratings with Lakshmanan-Porsezian-Daniel model by two integration schemes. Opt. Quantum. Electron. 53, 1–17 (2021a)

    Google Scholar 

  • Zhao, D., Lu, D., Khater, M.M.A.: Ultra-short pulses generation’s precise influence on the light transmission in optical fibers. Results Phys. 37, 1–18 (2022)

    Article  Google Scholar 

  • Zhou, Q., Zhu, Q., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Rom. Acad. Ser. A 16, 152–159 (2015)

    MathSciNet  Google Scholar 

  • Zhu, S.: The generalized Riccati equation mapping method in non-linear evolution equation. Application to (2+1)-dimensional Boiti-Leon-Pempinelli equation. Chaos Soliton Fract. 37, 1335–1342 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the “Fundamental Research Grant Scheme (FRGS/1/2021/STG06/USM/02/09) by the Ministry of Higher Education, Malaysia, and Division of Research and Innovation, Universiti Sains Malaysia. The authors would also like to thank the School of Mathematical Sciences, University Sains Malaysia, Penang, Malaysia for the provided computing equipment.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MTI: Conceptualization, Methodology, Resources, Formal analysis, Writing-Original draft, Supervision; FAA: Conceptualization, Methodology, software, Writing-Original draft preparation; JFGA: Conceptualization, Methodology, Writing-review editing, Validation, Final draft preparation, Supervision.

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Ethics declarations

Conflict of interests

The authors state that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.T., Abdullah, F.A. & Gómez-Aguilar, J.F. A variety of solitons and other wave solutions of a nonlinear Schrödinger model relating to ultra-short pulses in optical fibers. Opt Quant Electron 54, 866 (2022). https://doi.org/10.1007/s11082-022-04249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04249-8

Keywords

Navigation