Skip to main content
Log in

Optical photonic crystal sensor based on U-shaped ring resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This work is a proposal for a new structure of voltage sensor based on photonic crystals; it is composed of U-shaped photonic crystal ring resonator placed between two waveguides. The sensors structures have been changed in order to improve important sensor parameters such as quality factor and transmission. A large quality factor induces a good light confinement in semiconductor defect, making the photon more sensitive to voltage variation. The studied device offers nearly 100% transmission efficiency and a quality factor about 24,064. The electro-optical materials properties are ideally suited for narrow-channel optical communication systems and sensing applications. The values of about 622.22 nm/RIU, 1.12 nm/V and 2.24 nm per kV/mm have been obtained for refractive index sensitivity (Sn), the voltage sensitivity (SV) and the electric field sensitivity (SE), respectively. The simulation results presented in this paper have been analyzed by the two-methods plane wave expansion (PWE) and finite-difference time-domain (FDTD) using the Rsoft software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arunkumar, R., Suaganya, T., Robinson, S.: Design and analysis of 2D photonic crystal based biosensor to detect different blood components. Photonic Sens. 9(1), 69–77 (2019)

    Article  ADS  Google Scholar 

  • Benmerkhi, A., Bounouioua, A., Bouchemat, M., Bouchemat, T.: Analysis of a photonic crystal temperature sensor based on Z-shaped ring resonator. Opt. Quantum Electron. 53(41), 1–14 (2021)

    Google Scholar 

  • Bottauscio, O., Chiampi, M., Crotti, G., Giordano, D., Wang, W.C., Zilberti, L.: Uncertainty estimate associated with the electric field induced inside human bodies by unknown LF sources. IEEE Trans. Instrum. Measur. 62, 1436–1442 (2013)

    Article  ADS  Google Scholar 

  • D’souza, N.M., Mathew, V.: Two-dimensional tunable photonic crystal defect-based drop filter at communication wavelength. Photonics Nanostruct. Fundam. Appl. 25, 14–18 (2017)

    Article  ADS  Google Scholar 

  • Dašić, M. and Popović, M. A.: Minimum drop-loss design of microphotonic microring-resonator channel add-drop filters. In: 20th Telecommunications Forum (TELFOR), pp. 927–930 (2012). https://doi.org/10.1109/TELFOR.2012.6419360

  • Fu, Y., Zhang, J., Hu, X., Gong, Q.: Electro-optic tunable multi-channel filter in two dimensional ferroelectric photonic crystals. J. Opt. 12, 075202 (2010)

    Article  ADS  Google Scholar 

  • Gadot, F., Chelnokov, A., De Lustrac, A., Crozat, P., Lourtioz, J.-M., Cassagne, D., Jouanin, C.: Experimental demonstration of complete photonic band gap in graphite structure. Appl. Phys. Lett. 71, 1780–1782 (1997)

    Article  ADS  Google Scholar 

  • Ghadrdan, M., Mansouri-Birjandi, M.-A.: Low-threshold ultrafast all-optical switch implemented with metallic nanoshells in the photonic crystal ring resonator. Superlattices Microstruct. 111, 789–795 (2017)

    Article  ADS  Google Scholar 

  • Gutierrez-Martinez, C., Santos-Aguilar, J.: Electric field sensing scheme based on matched LiNbO3 electro-optic retarders. IEEE Trans. Instrum. Measur. 57, 1362–1368 (2008)

    Article  ADS  Google Scholar 

  • Hemanth Kumar, B.M., Srikanth, P.C., Vaibhav, A.M.: A novel computation method for detection of Malaria in RBC using Photonic biosensor. Int. J. Inf. Technol. 13(5), 2053–2058 (2021)

    Google Scholar 

  • Ho, K., Chan, C.T., Soukoulis, C.M.: Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152 (1990)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystal: Modeling of Flow of Light. Princeton University Press, Princeton,NJ (1995)

    MATH  Google Scholar 

  • Lin, P.T., Liu, Z., Wessels, B.W.: Ferroelectric thin film photonic crystal waveguide and it selectro-optic properties. J. Opt. a: Pure Appl. Opt. 11, 075005 (2009)

    Article  ADS  Google Scholar 

  • Mohammadi, Z., Van Vlack, C.P., Hughes, S., Bornemann, J., Gordon, R.: Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons. Opt. Express 20(14), 15024–15034 (2012)

    Article  ADS  Google Scholar 

  • Olyaee, S., Bahabady, A.M.: A Two-curve-shaped biosensor using photonic crystal nano-ring resonators. J. Nanostruct. 4, 303–308 (2014)

    Google Scholar 

  • Olyaee, S., Mohebzadeh-Bahabady, A.: Designing a novel photonic crystal nano-ring resonator for biosensor application. Opt. Quantum Electron. 47(7), 1881–1888 (2015)

    Article  Google Scholar 

  • Plihal, M., Maradudin, A.: Photonic band structure of two-dimensional systems: the triangular lattice. Phys. Rev. B 44, 8565 (1991)

    Article  ADS  Google Scholar 

  • Rajalakshmi, G., Sivanantharaja, A., ShanmugaSundar, D.: Design and optimization of two dimensional photonic crystal-based optical filter. J. Nonlinear Opt. Phys. Mater. 24, 1550027 (2015)

    Article  ADS  Google Scholar 

  • Rajasekar, R., Robinson, S.: Nano-electric field sensor based on two dimensional photonic crystal resonator. Opt. Mater. 85, 474–482 (2018)

    Article  ADS  Google Scholar 

  • Rajasekar, R., Robinson, S.: Nano-channel drop filter using photonic crystal ring resonator for dense wavelength division multiplexing systems. J. Nanoelectron. Optoelectron. 14, 753–758 (2019)

    Article  Google Scholar 

  • Rajasekar, R., Jayson, K., Jayabarathan, J., Robinson, S.: Nano-optical filter based on multicavity coupled photonic crystal ring resonator. Physica E 114, 113591 (2019)

    Article  Google Scholar 

  • Rakhshani, M.R., et al.: Tunable channel drop filter using hexagonal photonic crystal ring resonators. Telkomnika Indones. J. Electr. Eng. 11(1), 513–516 (2013)

    Google Scholar 

  • Rashki, Z., Chabok, S.J.S.M.: Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt. Commun. 395, 231–235 (2017)

    Article  ADS  Google Scholar 

  • Rezaee, S., Zavvari, M., Alipour-Banaei, H.: A novel optical filter based on H-shape photonic crystal ring resonators. Optik 126, 2535–2538 (2015)

    Article  ADS  Google Scholar 

  • Robinson, S., Shanthi, K.V.: Analysis of protein concentration based on photonic crystal ring resonator. Int. J. Opt. Photonics 10, 123–130 (2016)

    Article  Google Scholar 

  • Siraji, A., Alam, M.S., Haque, S.: Impact of space modulation confinement of light in a novel photonic crystal cavity on ferroelectric barium titanate. J. Lightw. Technol. 31, 802–808 (2013)

    Article  ADS  Google Scholar 

  • Suganya, T., Robinson, S.: Design of 2D photonic crystal based force sensor using paralleloid ring resonator. J. Micoelectron. 3(3), 425–430 (2017)

    Google Scholar 

  • Sun, D., Fu, X., Jiang, H.: Simulations for dual-rail driven electrooptic modulators of BaTiO3 crystal thin-film waveguides. Opt. Commun. 301–302, 152–158 (2013)

    Article  ADS  Google Scholar 

  • Taflove, A., Hagness, S.C.: Computational electrodynamics: the finite-difference time-domain method. Artech House, Norwood (2005)

    MATH  Google Scholar 

  • Venkatachalam, K., Robinson, S., Dhamodharan, S.K.: Performance analysis of an eight channel demultiplexer using a 2D photonic crystal quasi square ring resonator. Opto-Electron. Rev. 25, 74–79 (2017)

    Article  Google Scholar 

  • Villeneuve, P.R., Piché, M.: Photonic band gaps in two-dimensional square and hexagonal lattices. Phys. Rev. B 46, 4969–4972 (1992)

    Article  ADS  Google Scholar 

  • Watanabe, Y., Sawamura, D., Okano, M.: Recurrent local resistance breakdown of epitaxial BaTiO3 heterostructure. Appl. Phys. Lett. 72, 2415 (1998)

    Article  ADS  Google Scholar 

  • Zhang, W., Hu, A., Ming, N.: The photonic band structure of two-dimensional hexagonal lattice of ionic dielectric media. J. Phys.: Condens. Matter 9, 541–549 (1997)

    ADS  Google Scholar 

  • Zhao, Y., Ying, Y., Wang, Q.: Latest research progress on methods and technologies for tunable photonic crystals. Opt. Laser Technol. 64, 278–287 (2014)

    Article  ADS  Google Scholar 

  • Zhu, T., Zhou, L., Liu, M., Zhang, J., Shi, L.: High sensitive space electric field sensing based on microfiber interferometer with field force driven gold nanofilm. Sci. Rep. 5, 15802 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to professor A. Bellel for his valuable help.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Benmerkhi.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Competing interests

The authors declare that they have no potential conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alioueche, A., Benmerkhi, A. & Bouchemat, M. Optical photonic crystal sensor based on U-shaped ring resonator. Opt Quant Electron 54, 831 (2022). https://doi.org/10.1007/s11082-022-04248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04248-9

Keywords

Navigation