Skip to main content
Log in

New optical flux for optical antiferromagnetic modified drift density

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, we construct new optical perceptions of spherical modified drift flux for electromagnetic fibers. Then, we provide some optical conditions for drift density with antiferromagnetic model. Also, we demonstrate important results for total optical modified drift with an antiferromagnetic model for closed surface with electroosmotic potential. Finally, we design spherical modified drift microscale with modified drift electroosmotic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abouraddy, A.F., Bayindir, M., Benoit, G., Hart, S.D., Kuriki, K., Orf, N., Shapira, O., Sorin, F., Temelkuran, B., Fink, Y.: Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007)

    Article  ADS  Google Scholar 

  • Amjadi, M., Kyung, K.-U., Park, I., Sitti, M.: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016)

    Article  Google Scholar 

  • Balakrishnan, R., Bishop, R., Dandoloff, R.: Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain. Phys. Rev. Lett. 64, 2107 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Balakrishnan, R., Bishop, R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47, 3108 (1993)

    Article  ADS  Google Scholar 

  • Balakrishnan, R., Dandoloff, R.: The Schrodinger equation as a moving curve. Phys. Lett. A 260, 62–67 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Berry, M.V., Klein, S.: Geometric phases from stacks of crystal plates. J. Mod. Opt. 43, 165–180 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biener, G., Niv, A., Kleiner, V., Hasman, E.: Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt. Lett. 27, 1875–1877 (2002)

    Article  ADS  Google Scholar 

  • Cao, Q., Li, Z., Wang, Z., Han, X.: Rotational motion and lateral migration of an elliptical magnetic particle in a microchannel under a uniform magnetic field. Microfluid. Nanofluid. 22, 1–9 (2018)

    Article  Google Scholar 

  • Cao, Q., Liu, M., Wang, Z., Han, X., Li, L.: Dynamic motion analysis of magnetic particles in microfluidic systems under an external gradient magnetic field. Microfluid Nanofluid 21(2), 1–11 (2017)

    Article  Google Scholar 

  • Dandoloff, R., Zakrzewski, W.J.: Parallel transport along a space curve and related phases. J. Phys. A Math. Gen. 22(11), L461 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • Erb, R.M., Martin, J.J., Soheilian, R., Pan, C., Barber, J.R.: Actuating soft matter with magnetic torque. Adv. Funct. Mater. 26(22), 3859–3880 (2016)

    Article  Google Scholar 

  • Fink, Y., Winn, J., Fan, S., Chen, C., Michel, J., Joannopoulos, J., Thomas, E.: A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998)

    Article  ADS  Google Scholar 

  • Furlani, E.P., Ng, K.C.: Analytical model of magnetic nanoparticle capture in the microvasculature. Phys. Rev. E 73(6), 061919 (2006)

  • Garcia de Andrade, L.C.: Non-Riemannian geometry of twisted flux tubes. Braz. J. Phys. 36(4A), 1290–1295 (2006)

    Article  ADS  Google Scholar 

  • Garcia de Andrade, L.C.: Riemannian geometry of twisted magnetic flux tubes in almost helical plasma flows. Phys. Plasmas 13(2), 022309–022309 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Garcia de Andrade, L.C.: Vortex filaments in MHD. Phys. Scripta 73(5), 484 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Guo, B., Ding, S.: Landau-Lifshitz Equations. World Scientific (2008)

  • Hasimoto, H.: A soliton on a vortex filament. J. Fluid Mech. 51(3), 477–485 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jones, R.C.: A new calculus for the treatment of optical systems I. Description and discussion of the calculus. J. Opt. Soc. Am. 31, 488–493 (1941)

    Article  ADS  MATH  Google Scholar 

  • Korpinar, T., Körpınar, Z.: Timelike spherical magnetic \({\mathbb{S} }_{ {\mathbf{N} }}\) flux flows with Heisenberg spherical ferromagnetic spin with some solutions. Optik 242, 166745 (2021)

  • Kugler, M., Shtrikman, S.: Berry’s phase, locally inertial frames, and classical analogues. Phys. Rev. D 37(4), 934 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • Körpinar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik - Int. J. Light Electron Optics 219, 165134 (2020)

  • Körpinar, T., Demirkol, R.C.: Frictional magnetic curves in 3D Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 15, 1850020 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Körpinar, T., Demirkol, R.C.: Gravitational magnetic curves on 3D Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 15, 1850184 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Körpınar, T.: Optical electromotive force with Heisenberg spherical ferromagnetic spin. Optik 245, 167521 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C.: Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semi-Riemannian manifold. J. Mod. Optics 66(8), 857–867 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Körpınar, T., Demirkol, R.C.: Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D Riemannian manifold with Bishop equations. Optik 200, 163334 (2020)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations. Eur. Phys. J. D 73, 203 (2019)

    Article  ADS  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space. Int. J. Geom. Methods M. 16(8), 1950117 (2019)

    MathSciNet  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling along with coiled optical fiber on the unit 2-sphere S\(^{2}\). Rev. Mex. Fis. 65, 626–633 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Rev. Mex. Fis. 66(4), 431 (2020)

    Article  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Optik 217, 164561 (2020)

    Article  ADS  Google Scholar 

  • Körpınar, Z., Korpinar, T.: Optical hybrid electric and magnetic \({\mathbf{B} }_{1}\)-phase with Landau Lifshitz approach. Optik 247, 167917 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, Z., Korpinar, T.: Optical spherical electromotive density with some fractional applications with Laplace transform in spherical Heisenberg space \({\mathbb{S} }_{{\mathbb{H} }}^{2}\). Optik 245, 167596 (2021)

    Article  ADS  Google Scholar 

  • Lamb, G.L.: Solitons on moving space curves. J. Math. Phys. 18, 1654 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Murugesh, S., Balakrishnan, R.: New connections between moving curves and soliton equations. Phys. Lett. A 290, 81–87 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Satija, I.I., Balakrishan, R.: Geometric phases in twisted strips. Phys. Lett. A 373(39), 3582–3585 (2009)

    Article  ADS  MATH  Google Scholar 

  • Smit, J.: The spontaneous Hall effect in ferromagnetics I. Physica 21, 877–887 (1955)

    Article  ADS  Google Scholar 

  • Son, D.T., Yamamoto, N.: Berry curvature, triangle anomalies, and the chiral magnetic effect in Fermi liquids. Phys. Rev. Lett. 109, 81602 (2012)

    Article  ADS  Google Scholar 

  • Tao, G., Stolyarov, A.M., Abouraddy, A.F.: Multi-material fibers. Int. J. Appl. Glass Sci. 3, 349 (2012)

    Article  Google Scholar 

  • Tomita, A., Chiao, Y.: Observation of Berry’s Topological Phase by Use of an Optical Fiber. Phys. Rev. Lett. 57, 937 (1986)

    Article  ADS  Google Scholar 

  • Vieira, V.R., Horley, P.P.: The Frenet-Serret representation of the Landau-Lifshitz-Gilbert equation. J. Phys. A Math. Theor. 45(6), 065208 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wassmann, F., Ankiewicz, A.: Berry’s phase analysis of polarization rotation in helicoidal fibers. Appl. Opt. 37, 3902–3911 (1998)

    Article  ADS  Google Scholar 

  • Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., Hata, K.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011)

    Article  ADS  Google Scholar 

  • Yamashita, O.: Effect of the geometrical phase shift on the spin and orbital angular momenta of light traveling in a coiled optical fiber with optical activity. Optics Commun. 285, 3740–3747 (2012)

    Article  ADS  Google Scholar 

  • Yamashita, O.: Geometrical phase shift of the extrinsic orbital angular momentum density of light propagating in a helically wound optical fiber. Optics Commun. 285, 3061–3065 (2012)

    Article  ADS  Google Scholar 

  • Yan, W., Page, A., Nguyen-Dang, T., Qu, Y., Sordo, F., Wei, L., Sorin, F.: Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31, 1802348 (2018)

    Article  Google Scholar 

  • Zygelman, B.: Appearance of gauge potentials in atomic collision physics. Phys. Lett. A 125, 476–481 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talat Körpinar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T., Körpinar, Z. New optical flux for optical antiferromagnetic modified drift density. Opt Quant Electron 54, 829 (2022). https://doi.org/10.1007/s11082-022-04231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04231-4

Keywords

Navigation