Skip to main content
Log in

Ultra-high negative dispersion compensating circular–shaped PCF with highly birefringent and nonlinear characteristics for optical applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper presents a novel GaAs-filled five-ring circular-coated photonic crystal fiber (PCF) architecture with highly birefringent and nonlinear characteristics. The elemental simulation analyses are carried out in the COMSOL software v5.5, employing the finite element method (FEM) with a perfectly matched layer (PML) boundary condition to scrutinize a wide range of optical properties, such as birefringence (Br), nonlinear coefficient (NLC), effective mode area (EMA), confinement loss (CL), dispersion, etc. The simulated findings illustrate that for the optimized structural parameters, an ultra-negative dispersion, as well as an ultra-high Br and NLC of 0.187 and 2.06 × 106 W−1 km−1 can be sequentially acquired at 1.55 µm wavelength. Further, the developed PCF with ultra-high Br and NLC properties is conveniently fabrication friendly, which is a beneficial factor for probable practical utilization in terms of biosensing applications, as well as supercontinuum generation, polarization maintaining, nonlinear optics and so forth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedin, S., Hira, A., Mohammad Tadvin, S.: Novel Butterfly Photonic Crystal Fiber Structure with Negative Dispersion and High Non-Linearity. J. Adv. Opt. Photon. 1(3), 235–249 (2018)

    Article  Google Scholar 

  • Agbemabiese, P.A., Akowuah, E.K.: Numerical analysis of photonic crystal fibre with high birefringence and high nonlinearity. J. Opt. Commun. (2020). https://doi.org/10.1515/joc-2020-0084

  • Ahmed, K., et al.: Effect of photonic crystal fiber background materials in sensing and communication applications. Mater. Discov. 7, 8–14 (2017)

    Article  Google Scholar 

  • Ahmed, K., et al.: Ultra high birefringence and lower beat length for square shape PCF: analysis effect on rotation angle and eccentricity. Alex. Eng. J. 57(4), 3683–3691 (2018)

    Article  Google Scholar 

  • Ahmed, K., Paul, B.K., Jabin, M.A., Biswas, B.: FEM analysis of birefringence, dispersion and nonlinearity of graphene coated photonic crystal fiber. Ceram. Int. 45(12), 15343–15347 (2019)

    Article  Google Scholar 

  • Amin, R., et al.: Tellurite glass based optical fiber for the investigation of supercontinuum generation and nonlinear properties. Phys. Scr. 97(3), 1–1 (2022b)

    Article  Google Scholar 

  • Amin, R., et al.: Inspection of an HSH-PCF for optical Communication with high Non-linearity, birefringence and negative dispersion. Alex. Eng. J. 61(12), 11139–11147 (2022a)

    Article  Google Scholar 

  • Amin, R., et al.: FEA_LiNbO3: finite element analysis of novel LiNbO3 material based fiber for optical communication properties of nonlinear applications. Alex. Eng. J. 61(12), 12915–12923 (2022b)

    Article  Google Scholar 

  • Amin, R., Abdulrazak, L.F., Mohammadd, N., Ahmed, K., Bui, F.M., Ibrahim, S.M.: GaAs-filled elliptical core-based hexagonal PCF with excellent optical properties for nonlinear optical applications. Ceram. Int. 48(4), 5617–5625 (2022a)

    Article  Google Scholar 

  • Amin, R., Khan, M.E., Abdulrazak, L.F., Al-Zahrani, F.A., Ahmed, K.: Design of novel models for optical communication with ultra-high non-linearity, birefringence and low loss profile. Phys. Scr. 96(12), 1–13 (2021)

    Article  Google Scholar 

  • An, S., et al.: Ultra-short and dual-core photonic crystal fiber polarization splitter composed of metal and gallium arsenide. Optik 226, 1–9 (2021)

    Article  Google Scholar 

  • Anas, M.T., Asaduzzaman, S., Ahmed, K., Bhuiyan, T.: Investigation of highly birefringent and highly nonlinear Hexa Sectored PCF with low confinement loss. Results Phys. 11, 1039–1043 (2018)

    Article  ADS  Google Scholar 

  • Andrea, F., et al.: Birefringence phase matching in selectively oxidized GaAs/ AlAs optical waveguides for nonlinear frequency conversion. J. Nonlinear Opt. Phys. Mater. 05(04), 645–651 (1996)

    Article  Google Scholar 

  • Argyros, A., et al.: Ring structures in microstructured polymer optical fibres. Opt. Express 9(13), 813–820 (2001)

    Article  ADS  Google Scholar 

  • Bise, R. T., Trevor, D. J.: Sol–gel derived microstructured fiber: fabrication and characterization. In: OFC/NFOEC Technical Digest. Optical Fiber Communication Conference (2005)

  • Broderick, N.G.R., Monro, T.M., Bennett, P.J., Richardson, D.J.: Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett. 24, 1395–1397 (1999)

    Article  ADS  Google Scholar 

  • COMSOL Multiphysics® software version 5.5, Link: https://www.comsol.com/release/5.5/livelink-matlab.

  • Chen, D., Tse, M.L.V., Tam, H.Y.: Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: birefringence and dispersion. Prog. Electromagn. Res. 105, 193–212 (2010)

    Article  Google Scholar 

  • Chowdhury, M.M.A., Mohammadd, N., Hasan, M.K., Imam, S.A.: Thermo-optical Effect Dependent Absorption Enhancement in a Graphene Embedded LiNbO3 Based Cavity. In: 5th International Conference on Electrical Information and Communication Technology (EICT), pp. 1–5 (2021a)

  • Chowdhury, M.M.A., Priyam, A.G., Hasan, M.K., Mohammadd, N., Imam, S.A.: Design of MgO-doped-LiNbO3 based temperature tunable dual-narrowband absorber. In: IEEE International Conference on Telecommunications and Photonics (ICTP), pp. 1–5 (2021b)

  • Dobb, H., Kalli, K., Webb, D.J.: Temperature-insensitive long period grating sensors in photonic crystal fibre. Electron. Lett. 40(11), 657–658 (2004)

    Article  ADS  Google Scholar 

  • Haider, F., Ahmmed Aoni, R., Ahmed, R., Amouzad Mahdiraji, G., Fahmi Azman, M., Adikan, F.R.M.: Mode-multiplex plasmonic sensor for multi-analyte detection. Opt. Lett. 45(14), 3945–3948 (2020)

    Article  ADS  Google Scholar 

  • Hansen, T.P., et al.: Highly birefringent index-guiding photonic crystal fibers. IEEE Photon. Technol. Lett. 13(6), 588–590 (2001)

    Article  ADS  Google Scholar 

  • Hansen, K.P.: Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Opt. Express 11(13), 1503–1509 (2003)

    Article  ADS  Google Scholar 

  • Hassan, M.M., Ahmed, K., Paul, B.K., Hossain, M.N., Al-Zahrani, F.A.: Anomalous birefringence and nonlinearity enhancement of As2S3 and As2S5 filled D-shape fiber for optical communication. Physica Scripta 96(11), 1–16 (2021)

    Google Scholar 

  • Hui, Z., Zhang, Y., Soliman, A.H.: Mid-infrared dual-rhombic air hole Ge20Sb15Se65 chalcogenide photonic crystal fiber with high birefringence and high nonlinearity. Ceram. Int. 44(9), 10383–10392 (2018)

    Article  Google Scholar 

  • Iqbal, F., et al.: Alcohol sensing and classification using PCF-based sensor. Sens. Bio-Sens. Res. 30, 1–8 (2020)

    Google Scholar 

  • Islam, M.D.S., et al.: Single-step tabletop fabrication for low-attenuation terahertz special optical fibers. Adv. Photon. Res. 2(12), 1–9 (2021)

    Article  Google Scholar 

  • Islam, M.A., Alam, M.S.: Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence. J. Lightwave Technol. 30(22), 3545–3551 (2012)

    Article  ADS  Google Scholar 

  • Jabin, M.A., et al.: Design and fabrication of amoeba faced photonic crystal fiber for biosensing application. Sens. Actuators A 313, 1–13 (2020)

    Article  Google Scholar 

  • Jiang, X., et al.: Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat. Photon. 9(2), 133–139 (2015)

    Article  ADS  Google Scholar 

  • Ju, J., Jin, W., Demokan, M.S.: Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 µm. J. Lightwave Technol. 24(2), 825–830 (2006)

    Article  ADS  Google Scholar 

  • Liu, M., Yuan, H., Shum, P., Shao, C., Han, H., Chu, L.: Simultaneous achievement of highly birefringent and nonlinear photonic crystal fibers with an elliptical tellurite core. Appl. Opt. 57(22), 6383–6387 (2018)

    Article  ADS  Google Scholar 

  • Mohammadd, N., et al.: GaP-filled PCF with ultra-high birefringence and nonlinearity for distinctive optical applications. J. Ovonic Res. 18(2), 129–140 (2022)

    Article  Google Scholar 

  • Mortensen, N.A., Nielsen, M.D., Folkenberg, J.R., Petersson, A., Simonsen, H.R.: Improved large-mode-area endlessly single-mode photonic crystal fibers. Opt. Lett. 28, 393–395 (2003)

    Article  ADS  Google Scholar 

  • Paul, B.K., et al.: Investigation of gas sensor based on differential optical absorption spectroscopy using photonic crystal fiber. Alex. Eng. J. 59(6), 5045–5052 (2020)

    Article  Google Scholar 

  • Paul, B.K., Ahmed, K.: Si7N3 material filled novel heptagonal photonic crystal fiber for laser applications. Ceram. Int. 45(1), 1215–1218 (2019)

    Article  Google Scholar 

  • Paul, B.K., Ahmed, K., Thillai Rani, M., Sai-Pradeep, K.P., Al-Zahrani, F.A.: Ultra-high negative dispersion compensating modified square shape photonic crystal fiber for optical broadband communication. Alex. Eng. J. 61(4), 2799–2806 (2022)

    Article  Google Scholar 

  • Paul, B.K., Golam Moctader, M., Ahmed, K., Abdul-Khalek, M.: “Nanoscale GaP strips based photonic crystal fiber with high nonlinearity and high numerical aperture for laser applications. Results Phys. 10, 374–378 (2018)

    Article  ADS  Google Scholar 

  • Saitoh, K., et al.: Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11(8), 843–852 (2003)

    Article  ADS  Google Scholar 

  • Skauli, T., et al.: Improved dispersion relations for GaAs and applications to nonlinear optics. J. Appl. Phys. 94(10), 6447–6455 (2003)

    Article  ADS  Google Scholar 

  • Steel, M.J., Osgood, R.M.: Elliptical-hole photonic crystal fibers. Opt. Lett. 26(4), 229–231 (2001)

    Article  ADS  Google Scholar 

  • Wadsworth, W.J., Knight, J.C., Reeves, W.H., Russell, P.S.J., Arriaga, J.: Yb3+-doped photonic crystal fibre laser. Electron. Lett. 36(17), 1452–1454 (2000)

    Article  ADS  Google Scholar 

  • Wang, J.: Numerical investigation of high birefringence and nonlinearity tellurite glass photonic crystal fiber with microstructured core. Appl. Opt. 60(15), 4455–4461 (2021)

    Article  ADS  Google Scholar 

  • Wei, J., Murray, J.M., Barnes, J.O., Krein, D.M., Schunemann, P.G., Guha, S.: Temperature dependent Sellmeier equation for the refractive index of GaP. Opt. Mater. Express 8(2), 485–490 (2018)

    Article  ADS  Google Scholar 

  • Yang, C.C., et al.: Measurements of two-photon absorption coefficient and induced nonlinear refractive-index in GaAs/AlGaAs multiquantum well waveguides. Electron. Lett. 29(1), 37–38 (1993)

    Article  ADS  Google Scholar 

  • Yang, T., Wang, E., Jiang, H., Hu, Z., Xie, K.: High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt. Express 23(7), 8329–8337 (2015)

    Article  ADS  Google Scholar 

  • Yu, B., Rui, H.: A simple design of highly birefringent and nonlinear photonic crystal fiber with ultra-flattened dispersion. Opt. Quant. Electron. 51(11), 1–3 (2019)

    Article  Google Scholar 

  • Zhanqiang, H., Zhang, Y., Zhou, H., Wang, Z., Zeng, X.: Mid-infrared high birefringence bow-tie-type Ge20Sb15Se65 based PCF with large nonlinearity by using hexagonal elliptical air hole. Fiber Integr. Opt. 37(1), 21–36 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Researchers Supporting Project number (RSP-2021/100), King Saud University, Riyadh, Saudi Arabia.

Funding

This work was supported by Researchers Supporting Project number (RSP-2021/100), King Saud University, Riyadh, Saudi Arabia and in part by funding from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KA, FMB; Data curation; Formal analysis: NM, RA; Funding acquisition: FMB, SMI; Investigation; Methodology: NM, RA, KA; Project administration: KA, FMB; Resources; Software: KS, GR, NM, RA, KAJA; Supervision; Validation: KA, FMB; Visualization: NM, RA, KAJA; Roles/Writing—Original draft: KS, GR, NM, RA, KAJA; Writing—review and editing: RA, KA, KAJA.

Corresponding author

Correspondence to Kawsar Ahmed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, K., Radhakrishnan, G., Mohammadd, N. et al. Ultra-high negative dispersion compensating circular–shaped PCF with highly birefringent and nonlinear characteristics for optical applications. Opt Quant Electron 54, 834 (2022). https://doi.org/10.1007/s11082-022-04228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04228-z

Keywords

Navigation