Skip to main content
Log in

Design and performance analysis of plasmonic reflective codes in combinational circuits for high speed computing

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Plasmonics, often referred as “light on wire”, is an emerging nano-scale technology having the advantages of higher speed computing over the electronic devices and comparatively smaller size than the electro optical devices. With the help of plasmonics, it is possible to transmit data between chips at optical speeds and thus opening the doors towards miniaturization of devices and faster computers. Reflective codes are the self-complementing codes, which are used for communicating with computers. In this work, a novel design of plasmonic 2421 reflective code using plasmonic Mach–Zehnder interferometer has been proposed. As the designed reflective code is plasmonics based, hence it has smaller size, better processing speed, faster switching of light, better optical stability, lesser power consumption than the existing designs of codes. The footprint of the proposed device is only 190 µm × 35 µm with an extinction ratio of 18.23 dB. The performance of the device is theoretically analysed using a numerical analysis technique i.e. finite-difference-time-domain (FDTD) method and then comparing the simulation results of FDTD method with the MATLAB simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Bader, M.A., Marowsky, G., Bahtiar, A., Koynov, K., Bubeck, C., Tillmann, H., Hörhold, H.H., Pereira, S.: Poly (p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguideswitching. J. Opt. Soc. Am. B 19(9), 2250–2262 (2002)

    Article  ADS  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  • Boltasseva, A., Nikolajsen, T., Leosson, K., Kjaer, K., Larsen, M.S., Bozhevolnyi, S.I.: Integrated optical components utilizing long-range surface Plasmon polaritons. J. Lightw. Technol. 23, 413–422 (2005)

    Article  ADS  Google Scholar 

  • Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)

    Article  ADS  Google Scholar 

  • Brongersma, M.L., Zia, R., Schuller, J.A.: Plasmonics—the missing link between nanoelectronics and microphotonics. Appl. Phys. B 89, 221–223 (2007)

    Article  ADS  Google Scholar 

  • Cheng, Q., Bahadori, M., Glick, M., Rumley, S., Bergman, K.: Recent advances in optical technologies for data centers: a review. Optica 5, 1354–1370 (2018)

    Article  ADS  Google Scholar 

  • Choudhary, K., Kaushik, A., Semwal, A., Mishra, S., Kumar, S.: Implementation of an optical universal one-bit arithmetic logical circuit for high-speed processing combinational circuits. Opt. Quant. Electron 52, 1–10 (2020)

    Article  Google Scholar 

  • Choudhary, K., Kumar, S.: Design of an optical OR gate using Mach-Zehnder interferometers. J. Opt. Commun. 39, 161–165 (2016)

    Article  Google Scholar 

  • Choudhary, K., Kumar, S.: Design of pseudorandom binary sequence generator using lithium-niobate-based Mach-Zehnder interferometers. Opt. Eng. 56, 1–7 (2017)

    Article  ADS  Google Scholar 

  • Choudhary, K., Kumar, S.: Optimized plasmonic reversible logic gate for low loss communication. Appl. Opt. 60(16), 164567–164572 (2021)

    Article  ADS  Google Scholar 

  • Choudhary, K., Singh, A., Singh, A., Chaudhary, D., Kumar, S.: Implementation of highly optimized optical all logic gates on a single chip using Ti-diffused lithium-niobate for high-speed processing in combinational circuits. Microelectron. J. 111, 105048 (2021)

    Article  Google Scholar 

  • Cotter, D., Blow, K.J., Manning, R.J., Ellis, A.D., Kelly, A.E., Nesset, D., Phillips, I.D., Poustie, A.J., Rogers, D.C.: Nonlinear optics for high-speed digital information processing. Science 286, 1523–1528 (1999)

    Article  Google Scholar 

  • Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72, 1–11 (2005)

    Article  ADS  Google Scholar 

  • Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 1–9 (2006)

    Article  ADS  Google Scholar 

  • Economou, E.N.: Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969)

    Article  ADS  Google Scholar 

  • Gibbs, H.M.: Optical Bi-stability: Controlling Light with Light. Academic (1985)

  • Hosseini, A., Massoud, Y.: Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett. 90, 1–3 (2007)

    Article  ADS  Google Scholar 

  • Hu, X., Jiang, P., Ding, C., Yang, H., Gong, Q.: Picosecond and low power all-optical switching based on an organic photonic-bandgap micro-cavity. Nat. Photon. 2, 185–189 (2008)

    Article  ADS  Google Scholar 

  • Jia, P., Fang, G., Wang, D.: Characterization of miniature fiber-optic Fabry-Perot interferometric sensors based on hollow silica tube. Photon. Sens. 6(3), 193–198 (2016)

    Article  ADS  Google Scholar 

  • Kachris, C., Tomkos, I.: A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutor 14, 1021–1036 (2012)

    Article  Google Scholar 

  • Katti, R., Prince, S.: Ultrafast optical binary to gray code and gray to binary code conversion based on phase modulation in Mach-Zehnder interferometer. Opt. Eng. 56, 1–12 (2017)

    Article  ADS  Google Scholar 

  • Kumar, S., Bisht, A., Singh, G., Amphawan, A.: Implementation of 2-bit multiplier based on electro-optic effect in Mach-Zehnder interferometers. Opt. Quant. Electron 47, 3667–3688 (2015a)

    Article  Google Scholar 

  • Kumar, S., Bisht, A., Singh, G., Choudhary, K., Raina, K.K., Amphawan, A.: Design of 1-bit and 2-bit magnitude comparators using electro-optic effect in Mach-Zehnder interferometers. Opt. Commun. 357, 127–147 (2015b)

    Article  ADS  Google Scholar 

  • Kumar, S., Bisht, A., Singh, G., Choudhary, K., Sharma, D.: Implementation of wavelength selector based on electrooptic effect in Mach-Zehnder interferometers for high speed communications. Opt. Commun. 350, 108–118 (2015c)

    Article  ADS  Google Scholar 

  • Kumar, S., Raghuwanshi, S.K., Rahman, B.M.A.: Design of universal shift register based on electro-optic effect of LiNbO3 in Mach-Zehnder interferometer for high speed communication. Opt. Quant. Electron 47, 3509–3524 (2015d)

    Article  Google Scholar 

  • Kumar S, Singh L.: Proposed new approach to design all optical AND gate using plasmonic based Mach-Zehnder interferometer for high speed communication. Proc. SPIE 9884, Nanophotonics VI: 98842D (2016)

  • Lin, X.S., Huang, X.G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33, 2874–2876 (2008)

    Article  ADS  Google Scholar 

  • Matsuzaki, Y., Okamoto, T., Haraguchi, M., Fukui, M., Nakagaki, M.: Characteristics of gap plasmon waveguide with stub structures. Opt. Express 16, 16314–16325 (2008)

    Article  ADS  Google Scholar 

  • Min, C., Veronis, G.: Absorption switches in metal-dielectricmetalplasmonic waveguides. Opt. Express 17, 10757–10766 (2009)

    Article  ADS  Google Scholar 

  • Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  ADS  Google Scholar 

  • Pereda, J.A., Vegas, A., Prieto, A.: An improved compact 2D fullwave FDTD method for general guided wave structures. Microw. Opt. Tech. Lett. 38, 331–336 (2003)

    Article  Google Scholar 

  • Roelkens, G., Liu, L., Liang, D., Jones, R., Fang, A., Koch, B., Bowers, J.: Silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev. 4, 751–779 (2010)

    Article  ADS  Google Scholar 

  • Siokis, A., Christodoulopoulos, K., Pleros, N., Varvarigos, E.: Electro-optic switches based on space switching of multiplexed WDM signals: blocking vs non-blocking design trade-offs. Opt. Switch. Netw. 25, 40–56 (2017)

    Article  Google Scholar 

  • Takahara, J., Yamagishi, S., Taki, H., Morimoto, A., Kobayashi, T.: Guiding of a one-dimensional optical bema with nanometer diameter. Opt. Lett. 22, 475–477 (1997)

    Article  ADS  Google Scholar 

  • Veronis, G., Fan, S.: Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 30, 3359–3361 (2005)

    Article  ADS  Google Scholar 

  • Weeber, J.C., Dereux, A., Girard, C., Krenn, J.R., Goudonnet, J.P.: Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B 60, 9061–9068 (1999)

    Article  ADS  Google Scholar 

  • Xiao, S., Liu, L., Qiu, M.: Resonator channel drop filters in a plasmon-polaritons metal. Opt. Express 14, 2932–2937 (2006)

    Article  ADS  Google Scholar 

  • Yu, H., Peng, Y., Yang, Y., Li, Z.Y.: Plasmon-enhanced light–matter interactions and applications. Npj Comput. Mater. 5(1), 1–4 (2019)

    Article  ADS  Google Scholar 

  • Yu, Z., Veronis, G., Fan, S., Brongersma, M.L.: Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 92, 1–3 (2008)

    Article  ADS  Google Scholar 

  • Zia, R., Schuller, J.A., Chandran, A., Brongersma, M.L.: Plasmonics: the next chip scale technology. Mater Today 9, 20–27 (2006)

    Article  Google Scholar 

  • Zia, R., Selker, M.D., Brongersma, M.L.: Leaky and bound modes for surface plasmon waveguides. Phys. Rev. B 71, 1-9 (2005)

    Article  ADS  Google Scholar 

Download references

Funding

This research is sponsored by the DIT University, Dehradun, India project [DITU/Dean R&C/2022/003/EECE] titled, “Development of LSPR-based optical fiber sensors for bio-medical applications”. This work was supported by the Double-Hundred Talent Plan of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuldeep Choudhary or Santosh Kumar.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uniyal, S., Choudhary, K., Sachdev, S. et al. Design and performance analysis of plasmonic reflective codes in combinational circuits for high speed computing. Opt Quant Electron 54, 825 (2022). https://doi.org/10.1007/s11082-022-04211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04211-8

Keywords

Navigation